ISRAEL IOURNAL OF MATHEMATICS 111 (14999}, 339-372

COVERING NUMBERS FOR CHEVALLEY GROUPS

BY
EricH W. ELLERS®

Department of Mathematics, Unversity of Toronto
100 St. Genrge Street, Toronto, Ontarin, Canada M5S 3G3
e-maul cllers@math.toronto.edu

AND

NikoLAl GORDEEV*

Department of Mathemaltics, Russian State Pedagogical University
Moyka (8, St. Petersburg, Russia 191-186
e-mail: ulgebra@vt.rgpu spb ru

AND

Manrcer HERzOG"®

School of Mathematscal Sciences, Raymnond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv 69978, Israel
e-matl: herzog@math.tau.ac.1l

ABSTRACT
Let G be a quasisimple Chevalley group. We give an upper bound for the
covering number cn(G) which is linear in the rank of G, i.e we give a
constant d such that for every noncentral conjugacy class C of G we have
C™ - G, where r = rankG.

* Research supported in part by NSERC Canada Grant A7251.

** Research supported in part by the Hermann Minkowski-Minerva Center for
Geometry at Tel Aviv University.
Received November 30, 1997

339



340 E. W. ELLERS, N. GORDEFV AND M. HERZOG Isr. J. Math.

1. Introduction

We are dealing with the following problem: Let G be a group and let A be a
set of subsets of G. Suppose X" = G for every X € A and for some positive
integer n depending on X (here X" = {x1r2~~~;rn|.r. € X}): determine the
smallest positive integer n, (if it exists) such that X" = G for all X € 4. In
particular, we are concerned with the case where G is a simple or quasisimple
(i.e.G is perfect and G modulo its center is simple [GLS, Definition 4.6]) group
and 9 is the set of all nonidentity or noncentral conjugacy classes of G. Here the
integer n, is called the covering nnmber of G. We write n, = en{(7).

The covering number is known in the following cases: en(A,) = (3] if n > 6,
and cn(As) = 3 ([Dv]): en(PSLy(K)) = 3 if K is a finite field and |K| > 4, and
en(PSLy(K)) = 2if K is an algebraically closed field ([ACM|); en(Sz(22%+1)) = 3
(IACM]): en(PSL.(K)) = nif |K| >4 and n > 4, and en(PSL3(K)) = 3 if K
is a finite field, |K| > 4, or K is an algebraically closed field (|[Lev]). Also, the
covering numbers are known for all finite simple groups with order less than 108
([kar]) and for all sporadic simple groups ([Z}).

In addition to the exact calculation of covering numbers for some classes of
simple groups there are estimates of such numbers which also can be useful. In
particular, cn(G) < min (k(k — 1)/2, 4k?/9), where G is a finite simple group
and k is the number of its conjugacy classes (|AHS]). In [Gol] it has been proved
that for every simple algebraic group G over an algebraically closed field of char-
acteristic 0 and for every noncentral conjugacy class C of G we have C? = G,
where r is the rank of G and C?7 is the closure of C?" with respect to the Zariski
topology. Thus C*" = G and therefore en(G) < 4 - rankG. Recently Arad,
Fisman and Muzychuk ([AFM)]) proved that if C is a nonidentity conjugacy class
of a finite simple group G and if n = |C¢(g)|, where g € C, then C* = G.

The purpose of this paper is to show that there is a constant d such that for
cvery quasisimple Chevalley group G (proper or twisted) the inequality ¢n(G) <
d-rank G holds (here d is general and does not depend on the type, rank, or field
of G). By Chevalley group here we mean a group generated by root subgroups
corresponding to an irreducible root system in the sensc of R. Steinberg (|St]).
Thus such groups are always quasisimple except for a few groups over small fields.
In the case of twisted groups we consider only groups over finite fields. Thus we
consider all proper quasisimple Chevalley groups over arbitrary fields and all
twisted quasisimple Chevalley groups over finite fields. It should be noted that
all finite simple groups of Lic type belong to the set considered. In general the
constant d emerging from our calculations is large. However, we believe that this
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constant should be small. In some cases we get better estimates for d than in the
general case, e.g. if G is a classical group of rank at least 3 and over a field K
with |K| >4, or |k| >4 in case 2D,,;. Here we can say d < 28.3. However,
our proof yields an estimate for d which is valid for all cases.

For more information on covering numbers we refer the reader to the Lecture
Notes by Arad and Herzog [AH] which contain results, motivation and applica-
tions. There one finds also a discussion on lower and upper bounds.

As mentioned above, the covering number for the projective special linear
groups has been determined by Lev [Lev]: cn(PSL,(K)) = n (|K| > 4, n > 1).
Thus cn(G) = rankG + 1 in this case, so ¢cn(G) < 2 - rank(;. Gordeev showed
(see [Gol], [Go2]) that en B, < 2r = 2-rankB,. Examples confirm that this
bound cannot. be improved. For a large class of groups Gordeev established
cn(G) < 4-rankG. We expect similar results to be true for all Chevalley groups.

The referee informed us that there is a preprint by Lawther and Liebeck [L.L]
dealing with related topics and using entirely different methods. They provide
an upper bound for the conjugacy diameter cd(G) for a finite simple group G of
Lie type, which is linear in the rank of G. They also discuss lower bounds for
cd(G). It follows immediately from the definitions that cd{G) < cn(G).

2. Notation and terminology

2.1 GROUP THEORY. Let G be a group. Lei 1 denote the identity of G and let
[z, y] = zyz~ 'y~ be the commutator of the clements x, y in G. If X C G, then

X™={z122--Tm|z; € X}. A conjugacy class C is said to be real if C~! = C.
Let I(G) denote the augmentation ideal of the group ring K|G), i.e. I(G) =kere,
where € : K[G] = K with €|, = 1k and € (G) = 1.

Let ¥ & N 4 G and N; € G. Then the group G acts on the factor group
N/N: by conjugation. If the group U = N/N, is abelian, we shall say that U is
a G-module and we write the action on the group U in additive form. Also, we
let an element g € G act on U". Thus g(u) means gng~! mod N;, where u is the
image of n € N in U = N/N;. Note that in the additive language the clement
(g — 1)(u) corresponds to [g,n] mod N,. We say that an element g € G acts on
U without fixed points if the operator g — 1 on U is invertible.

2.2. CHEVALLEY GROUPS (see [St|, [Carl, 2]). Here R is an irreducible root
system. We shall use the notation of N. Bourbaki ([Bou, Tables I-1X]) for R and
for roots. Thus R = A,, B, C,, D, Eg, E7, Eg, Fy, or G,. The simple root
system A = {ay,...,a;} which generates R is numerated according to [Bou,
Tables I-1X].
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In the case of twisted groups we attach the root system B, to the groups of
type 2As, and 2D,; C, to 2Ag._1; Fy to 2Eg; G to 3Dy (see [Car 1, 2)). If
Bi,....Bs € R then (B1,....0:) :={y=mf1+ -+ m,ﬁ,l'y € R, m, € Z}.
Further, R == Rt U R~ where R* is the set of positive roots and R~ is the set
of negative roots.

Let K be a field. For « € R let U, be a root subgroup. Then

Us = (za(t)] t € K),
or U, = (zalt,s)| t, s € K) or Us = (z4(t,5.9) | t,s,q € K) for twisted groups

(see [St], [Carl]). Here U, acts as a group of unipotent matrices on some vector
spacc over the field K. The linear group G = (Ua‘ « € R) acting on the same
vector space will be called a Chevalley group defined over K ([St]). As in [St] we
define wy(t) = za(t)r_oa(—t"1)za(t) and w, = we(1l). Then (—Ql (1)> is the

matrix corresponding to w, in SLo(K). For the twisted group A, the matrix

0 0 1
corresponding to w, is | 0 -1 0 ] in SU3(K).
1 0 0

The automorphisms of the field K which correspond to twisted groups will be
denoted by © and we will write t® instead of ©(t) for ¢t € K. The subfield of
O-invariant elements will be denoted by k. Note that for twisted groups we shall
always assume that K is a finite field.

Let B = HU be the Borel subgroup corresponding to the decomposition R =
R* U R~. Here H is a maximal split torus of G and U = (Ua| a € R*). Also
U- = (Ual « € R™). Let W be the Weyl group of R and N < G be a subgroup
such that H 9 N and W ~ N/H. An element n € N will be denoted by w,
where w is the image of n in W. We also use the notation hy(t) for t € K* (see
[St]) for semisimple elements of (U, U_,,) and H, = (ha(t)] t € K*).

2.3. ALGEBRAIC GROUPS (see [Bo]). Let G be an algebraic group defined over
afield F, let L/F be an extension field of F. Let G(L) denote a group of L-points.
If X € G(L), then X denotes the Zariski closure of X in G(L).

3. The main result and outline of the proof

THEOREM M: There is a positive integer d such that cn(G) < d-rankG for
every quasisimple proper Chevalley group or quasisimple finite twisted Chevalley
group G.

The statement of this theorem can be split into the following two results. The
first, which we shall call M1, is exactly Theorem M, but for the cases where G is
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a classical group, i.e. a group of type A, By, Cr, D,, 2As,_1, 2Ag, 2Dpy1, of
rank > 3. The second, which we call M2, says that for every positive integer 7
there is a positive integer dy = do(r) such that cn(G) < dp if rank G < r (here G
is, of course, a quasisimple proper Chevalley group or a quasisimple finite twisted
Chevalley group). The last statement is much easier to prove than M1 and will
be established at the end of the paper. Thus we first concentrate on M1. Let G
here be a classical group of rank > 3, but not of type A,.. The case A, will be
considered separately in Section 5.

We choose a parabolic subgroup P C G corresponding to A\{c,} (here G is a
classical group of rank r). Then P = LV where L is a Levi factor and V' = R, (P)
is the unipotent radical of P ([Car2]). The group L in turn can be presented in
the form L = HG;, where G1 = (Uala € {m,...,a,_1)). Note that

(1) Gy ~SL.(K)/Z or G;=~SL.(k)/Z

for some subgroup Z < Z(SL.(K)) or Z < Z(SL,(k)) (because we remove the
last root a, from the Dynkin diagram). Further, put P=G,V.
The first and most difficult step to prove M1 is

PROPOSITION 1: Let C be a noncentral conjugacy class of G. Then C*? contains
an element g = zg1v where z € Z(G), g1 € G1, ¢1 ¢ Z(G1) andv e V.

The next step is based on (1), the results of A. Lev on covering numbers
for SL,(K) ({Lev]), and some estimates of covering numbers for SL,,(X) where
|K| = 2,3. We shall prove

ProprosITION 2: IfC is a conjugacy class of G containing an element of the form
g = zg1v where z € Z(G), ¢ € G1, g1 ¢ Z(G1), and v € V, then z;P C C8"
for some z, € Z(G). If in addition |K| >4, or |k| > 4 if G is of type 2D, ;,
then 2; P C C°".

From Propositions 1 and 2 we obtain

2 Pc 025-647-.
nbPcc¥er (if IKI >4, or ]kl >4 in case 2D,4;)

(2)

for some 2z; € Z(G). Since U C P the inclusion (2) implies

5 5
#UcC?¥r, U~ cC? 6dr,

(3)
al cC¥%, »U~ cC¥% (if|K| >4, or [k| >4in case 2D,41).

Further, we use the following result.
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THeorREM H ([EGI, II, I11)): Let G be a proper Chevalley group or a finite
twisted Chevalley group, and let () be a noncentral conjugacy class of G. Then
for every h € H there is an element x € @ such that £ = ujhuy where ug € U™
anduy € U.

Note that this is a generalization of a theorem of Sourour ([So]).
According to Theorem H we can find an element x = u;2z%u,, where u; €
U™, up €U, and z, is from (3). Using (3) we get

6.
T e C2 64r;

xe e (if |K| >4, or [kl > 4 in case 2D,y 1).

4)

Since the set C is invariant under conjugation, (4) yields

25.64
QCC™,

5
©) QcC c¥er (if |K| >4, or |k| > 4 in case 2DT+1)

for all noncentral conjugacy classes @ and C of the group G. Since every element
in G can be presented as a product of two noncentral elements, we obtain from
(5):

G = CZ7~647',

G =¥ (if |K| >4, or lk| >4 in case *Dyy ).

This will complete the proof of M1.

4. Auxiliary results

4.1 GROUP THEORY. Let T beagroup, V < T, and F =T'/V. We assume that
the group V has a central filtration 1 = V,,, < V,_1 < --- <V = V such that
V; 9T for every z, every factor V;/V;4 is a finite-dimensional vector space over
some field L, and the natural I'-action on V;/V;1; (see 2.1) is L-linear.

PROPOSITION A: Let vy € T, u € V;. If v acts without fixed points on V;/V;41
(see 2.1), then there is some v € V; such that

vy~ = yumod V4.

Proof: The operator y~! acts also without fixed points on V;/V ;. Hence

(¥ = 1)v = u mod V;4, for some v € V;. This congruence in the multiplicative

—-1 1

form gives us [y = q[y™},v] = yu mod Viy;.

,v] = uw mod Viyi. Thus vyv™
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PROPOSITION B: Let v € I'. Suppose vy acts without fixed points on each factor

Vi/Vis1. Then for cvery u € V there is some v € V such that vyv™! = yu.
Proof: This follows immediately from Proposition A by induction. ]

PrRoPOSITION C: Let C be a conjugacy class of I' and let C be its image in
F =T/V. Suppose
(a) C* = F for some positive integer k,
(b) there exists a sequence gy, ..., gx € C (where k is the same in (a) as in (b))
such that the group D = {g1,...,gx) satisfics [(D)}V;/Viy1 = Vi/Viy1 for
every i (herel (D) is the augmentation ideal of L[D]). Then

VcC¥* and T =C%,

For the proof of Proposition C we need a few lemmas.

LEMMA 1: Let A be a group and let g1,...,94,01,...,vs € A. Then

(vig1v} N(vagauy ') - (vegovy ) gt gr =
for, g1)(g1 [z, 920 97) (g1 92+ Gomr [vew ) 9221+ 95 Mg ')
Lemma 1 can be proved by simple calculation.

LEMMA 2: Let g,...,9s €T, vy,...,vs € Vi, uy,...,uy € Viyy (here T, V; and
Viq1 are as above). Then the clements

= (1g1v] ") (vagavs ') -+ (vsgsvg gt gy

and

1 -1 1 -1 -1 - _ _
y = (wvigioy 'uy Y ugvegovy tug ) - (usvsgsvy tuy g g

belong to the group V;. Moreover, yz~' € V,;, and
r=(1-gln+g(l—g2)va+... +g192° - gs-1(1 — gs)vs mod Viyy,
ye ' = (1—gi)ur + (1 = ga)ug + ... + 192 g—1(1 — gs)us mod Vo
(here we use the additive form; see 2.1).

Proof: The inclusion z,y € V; and the congruence for z follow directly from

Lemma 1. Consider

yx—l = (ul'“lglvl_lul_l) ce (usvsgsvay—lu.:l)(vsg_;lvs_l) T (Ulgl—lvl_l)'
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Put §; = vig,-vi_l. From Lemma 1 we get yz~! € V;;; and
(6) y:c_l = (1 — gl)ul +§1(1 — gg)UQ +-4q 93_1(1 — gs)us mod Vi+2.

Since 1 =V, 4--- <V =V is a central filtration, the operator v; acts trivially
on every factor V;/V;11. Hence the operators g and § coincide on V;/V;4;. Thus
in (6) we can change g; to g;. |

LEMMA 3: Let A = {g1,...,9s) be a group and let L be a field. Further, let M
be an L[A]-module with dim;M < oo, and let T: M®M & --- O M — M be
a map given by the formula T((mq,...,ms)) = (1 —g1) m; + g1 (1 — g2) ma +
o+ g1 g2 gs—1 (1 —gs) ms. IfI(A)M = M, then imT = M (where imT is
the image of T).

Proof: Put my,...,m;_1,Miy1,...,ms = 0. Then
(7) 9192 gi-1(1—g;)M CimT

for every ¢. In particular, (1 — ;)M C imT. Hence (1 ~ ¢1) imT C imT,
which in turn implies g; imT C im T (note that im T is a subspace of M). Since
g1 1s a linear operator on the finite-dimensional vector space M, we also have
g7! imT C imT. Suppose (1 — )M C imT and

(8) ¢! imT CimT
for every I < i. Then from (7) and (8) we have
(9) {1-¢g)M CimT,
which in turn implies (as for g;)

(10) gf' imT CimT.

Thus (9) and (10) hold for every i. Now (10) implies that im T is A-invariant
(recall A = (g1,...,9s)) and (9) that A acts trivially on M/imT. Hence
I{A)M ¢ imT. But I(A)M = M according to the last assumption in our
lemma. Thus M =imT. |

Now we return to the proof of Proposition C: First we will show

(11) V c C?%*.
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Let g1,- .., gk be elements satisfying (b). Put go = gk_I g;_ll ---g7. Since T =
F, we can present the element g in the form gy = fovg, where fo € C*, vy € V.
Let v € V = V,. The factor V5/V; is a D-module satisfying the conditions of
Lemma 3. Therefore

v= (1—g)vi+ g1l —ga)vs+--+ g1 g2 gr—1(1 — gx)vy, mod Vy
for some vf,...,v;, € V. According to Lemma 2,

zo = (Vjg1o]™h) - (v, gkv;c“l) go = v mod V;.

Suppose
(12) 2 = (B 197 1) -+ (O grTy )go = v mod Vigs
for some 9q,...,0, € V. Then v = uz; mod V42 for some v € V;;1. The factor

Vit1/Vii2 also satisfies the conditions in Lemma 3. Thus
u=(1-g1)ur +g1(1 —g2)ua+---+ 192 - gr—1(1 — gx)ux mod Vipo
for some ug,...,ux € Viy1. Using Lemma 2 we obtain
(ulﬁlglfiflul—l) . (ukﬁkgkﬁ;lugl)goxi_l = u mod V;4o.
Put 2,41 = (ulf)lglf}l_lul_l) ‘e (ukﬁkgkf),:lu,:l)go. Now we have
(13) v = 2441 mod Viqo.

Since from the assumption (12) we can get (13), we can present every element in
V in the form (vigivy') - (vkgkvg ')go for some vy, ..., vx € V (recall that V
is a nilpotent group). Since go = fovg, fo € C*, we can obtain any element of
Vug ' in C%. But Vu, ! = V because v € V, and we obtain (11).

Now let v € I". Since 5k = F, we have v = fv, where f € C*, v € V. Thus
the equality C3* = T" follows from (11). |

4.2. CHEVALLEY GROUPS.

ProrosITION D: Let G be a Chevalley group (proper or twisted } of rank > 3
(if G is of type A, we allow r > 2), and let Q be a noncentral conjugacy class of
G. If 2/ € Q™ for some z' € Z(G), then the set Q*™ contains an element of the
form zu, where z € Z(G), u € U, u # 1, or G is a group of type C, and Q*™
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contains a noncentral element of the form zh,(—1)x,(s)}, where « is a long root,

2€ Z(G),s€ K.

Proof: Let a be a maximal positive root of R {or @ = ¢ in case G is of type
2Ay,), and let t € U, (or t € Z(U,,) in the case of 2As,). We take t # 1.
Since @ is a maximal root (or a = €, t € Z(U,,) for 2A,,), we have t € Z(U).
Further, there exists an element ¢’ € @ that does not commute with ¢ {indeed,
G is quasisimple and hence G is generated by every noncentral conjugacy class,
in particular, G is generated by elements in Q). We can write ¢ = wwb for
some u € U, w € N, b/ € B. Since t does not commute with ¢’, it does not
commute with g = u~!g’u = wb, where b = b'u (recall that t € Z(U)). Put
t; = gig™' = whtb~'w™'. Therefore t; € Uyay, 81 # 1. Since 2’ € Q™,
we get 97!z’ € Q™! and therefore (t7!gt)g7'2' = t7't12’ € Q™. We have
171 € Uy, 11 € Upay, t7t1 # 1 (by choice of g). Put £ =1t Iftisa
unipotent element, one can easily get a nontrivial unipotent element of the form
ato~1t for some ¢ € G, and therefore one can get a desired element zu € Q?™.
If #2 # 1 and £ is unipotent, then #22/? € Q®™ is an appropriate element.

Assume that f is not unipotent, and that £* is also not unipotent or t? = 1.
This can happen only if w(a) = —a (recall, t € (Us, Uy(a)))- Put Go = (Usa)
if G is not of type 2Ay, and put G = (Z(U1q)) if G is of type 2Az,. Thus ¢
is a semisimple element of G, ~ SL2(K) or SLa(k) or PSLz(K) or PSLy(k). If
G is not of type C, and rank G > 3, one can easily check that the image of the
homomorphism ¢ : HG, — AutG, given by the formula p(z)(y) = zyz™?, is
isomorphic to PGLy(K) (or PGLg(k)). Hence the elements £, £~! belonging to
G, are HG4-conjugate (recall that « is a long root). Now let v be a root such
that {«, 7} is a simple root system for an irreducible root system of rank 2. Put
M, = (Uiaﬂ"vl i >0, j > 1). Then G, normalizes M, and for every z € G,
z # 1, there exists an element m, € M, such that zm,z~! # m, (we omit here
the simple arguments concerning classical groups of rank 2 which imply these
statements). Thus u = [f, y] # 1 for some y € M,. Since £z’ € Q™ and £,{}
are HG - conjugate, we have 12/ € Q™ and tz/yt 12’y = w22 € Q*™. Thus
we obtain our statement.

Consider now the case where G is a group of type C,. We have G, ~ SL»(K)
(e is a long root by our choice) and £ € G,. Since £ = t7t;, where t7% €
Ua, t1 € U_,, the element £ does not belong to Z(G,). Hence ¢ is conjugate (in
G,) to an element wohe(f)z, for some £ € K* and z, € U, (see [EG I, Lemma
2]) and therefore to zqwaha(€). But

(14) (Zawaho(€))(Waha(€)Te) = Taha(—1)To = ho(—1)7.
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for some zf, € Uy. If ho(-1)z), € Z(G), then char K =2, ho(—1)z), = 1. This
means that { is a real element. Then we can repeat our previous considerations
with M, and obtain an appropriate element. If char K # 2, then h,(—1)z!, ¢
Z(G). Thus we obtain from (14) a noncentral element h,(~1)z/ 2% € Q*™.
|

Remark: The trick with conjugate long root elements ¢, ¢ used at the beginning
of the proof of Proposition D is from [Va).

ProrOSITION E: Let G, G, V be as in Section 3. Let v € V, v # 1. Suppose
(15) v = H Le,+e,o
l‘j

where ¢, ¢, € U 4, (recall that we use the numeration of roots of [Bou] here).
Then the element v is Gy-conjugate to an element

'
UV = Te ez " Legteq """y OF
(16) V' = Tae,  Toey T2, Hmclﬂj and the root system R = C,,

[2¥)

where Te +c, € U 4¢,. T2e, € Uae,, and ¢, # 1 for some k, or

v =z, (0,b)) -z, (0, by) Hze‘ﬂ] and G is a group of type ? A,y

1.J
where z,(0,b;) € Ue,, Te,4¢, € U, 4¢,, and by # 0 for some k.
Proof: We may assume ., 4, # 1 in the expression (15). Otherwise we can

conjugate v by some ), where w € W(G,). Further, assume %, j, k are distinct,
then, according to Chevalley’s commutator formula {Carl, Theorem 5.2.2],

[Teire, (@), Tepoe, (b)) = Le, 4, (ab),
(17) [Ze,4¢,(a), Tep—e, ()] = 1if L #4,j,k;
[Te, 4, (a) (b)) = 1if R# C, or G is not of type 2A,,;
[T, +¢, (a), Te,—¢,(b)] € Uae, if R=C; and (T, 4e, (@), Zc,—, (b))
=z, (0,b;) for some b; € K if G is of type 2A,,.

’ xe,—e]

Conjugating v by an appropriate z., _,(b), k > 2, we can eliminate factors
of the form x, 4¢,, k > 2, in (15) or we obtain a factor of the form zo,, # 1
(in the case R = C.) or a factor z¢,(0,b), b # 0 (in the case 2A4,,). If
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we obtain zo,, # 1 or z.,(0,br) # 1, we quit, otherwise we continue. Then,
conjugating v by an appropriate ., ., (b) we can eliminate factors of the form
Tegterr kK > 2, or we obtain factors zo,, # 1 or z,(0,bc) # 1. After such
procedures we shall have an element v’ that is G-conjugate to v and has the
form v = Z¢ 46, [ ;5220 4, OF V' has factors 2o, # 1 or z¢(0,bx) # 1.

Repeating this process with !

tstesr Testeq €tC. we shall obtain an appropriate

element. 1
4.3 ALGEBRAIC GROUPS.

ProproSITION F: Let G be a Chevalley group over a field K, char K = 0.
Consider G as a subset of A(K), where A is the corresponding simple algebraic

group. Then {a, b) = A for some a, b€ G.

Proof: There is an element a € H such that (a) = T, where T is a maximal
torus of A (here H C T(K)) ([Bo, Proposition 8.8]). Further, there is only a
finite number of closed connected subgroups of A containing T ([Bo, Proposition
13.20]). Let 2 be the set of all such subgroups except the group A. Then
every closed proper subgroup of A containing T is contained in Ng(F) for some
F € A. Thus we have the open subset M = A\(Upcq Nc(F)) of A, satisfying
the following condition: (m, a) = A for every m € M. Since char K = 0, we
have G = A and therefore M NG # ¢. |

5. Covering numbers for the groups of type A,

5.1. ESTIMATES FOR COVERING NUMBERS FOR A;. In [ACM] it has been
shown that cn(PSLy(K)}) = 2 if K is an algebraically closed field, or = 3 if K is
a finite field. Here we will derive weaker results which hold for any field.

ProprosITION G: Let @ be a noncentral conjugacy class of SLz(K), IK] > 5.
Then

(18) Q* D SLa(K)\ Z(SLa(K))
and
(19) Q® = SLy(K).

Proof: We can take an element z in @ that has the form

0 « 1l a .
x-(_a_l 0)<0 1> for some ax € K*, a€ K.
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Let B€ K*, B2 # %1, and let

_(B 0

-(2 2)
—d 1 a i-'d 0 a PR 1 S 0 af3? €Q
y=% o0 1 —a~! 0 “\lo 1 —a~182 0 :

_ _ _,32 0 l b 2 _ 2
Z—?ﬂ—( o -8-2)\o 1 €@, whereb=a+af™".

Since 82 # +1, we get that z is a semisimple regular element. Hence Q* D
SL2(K)\Z(SLz(K)) ([EGI]).

(Note that 1 € Q%) Thus if |K| > 5, then we can find 8 € K*, 8% # %1, and
we get (18). Note that (19) follows automatically from (18). 1

Remark: We omit the group SLy(GF(5)) in our considerations, as we can do
with any finite set of finite groups. However, cn(PSL2(GF(5))) = 3 ([ACM]).
That means that the third power of any noncentral conjugacy class of SL2(GF(5))
contains a semisimple regular element of order 4. The square of the conju-
gacy class of this element of order 4 gives the whole group SL2(GF(5)). Hence
cn(SL2(GF(5))) < 6.

5.2 THE ESTIMATES OF COVERING NUMBERS FOR 4,, 7 > 1,|K| >4. Here
we have the principal result of A. Lev [Lev, Theorem 2]: If Q is a noncentral
conjugacy class of SL,(K), n > 3, |K| > 4, then

(20) Q" O SLa(K)\Z(SLa(K)).
The inclusion (20) implies immediately
(21) Q%" = SL.(K).

Remark: If we are concerned with the covering number for PSL,(K) only, there
is a result of A. Lev [Lev] that is much stronger than (21); namely, cn(PSL,(K))
=n if |K| >4, n >3, and in the case n = 3 the field K is supposed to be finite
or algebraically closed.
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5.3 ESTIMATES FOR COVERING NUMBERS FOR 4., r > 2, |K| =2, 3.

PRrROPOSITION H: Let K = GF(2) or GF(3) and let Q be a noncentral conjugacy
class of SLo(K), n > 3. Then Q%"+ = SL, (K).

Proof of Proposition H:

LEMMA 4: Let E;; be matrix units. Let F, € GL,,(K) be a cyclic matrix, i.e.
a matrix in rational canonical form: F, =Y ;_, Exx-1+ Y ., 6:Ein, a; € K.
Then F,, is SL,(K')-conjugate to a matrix of the form

(22) > a;E, 1<i j<n a,€K
i+3 > ntl

i.e. to wb, where

and b is upper triangular.

Proof: Clearly E;;Ex = 0xEu, and t;; = 1 + E;; is a transvection if ¢ # j.
Then for n > 3,

(1+ Ezn) (14 Eno11) Fa (1= En11) (1= Ean)
n-—1 n-1 n n-1
=3 Bex1+ Y b Eino)+ (D @l B+ Y, a En)
k=3 1=2 i=1 j=1
=Fo_1+ M,_1,

where F,,_; is a cyclic matrix and b, a;, @] € K. The proof is now completed
by induction. Observe that our contention is trivial for n = 1 and n = 2. Also
observe that all entries in M, _ are zero except for entries in the last row and
the last column and that these zeros remain zeros in the next induction step.
]

LEMMA 5: Let Q be a noncentral conjugacy class of SL,(L), where L is an
arbitrary field and n > 3. Then Q* contains a noncentral upper triangular
matrix.

Proof: We can take a matrix q € @ of the form ¢ = ¢,, ® qn, D - - D gn,, Where
gn, is an n;-cyclic matrix and ny + ng + -+ + n, = n. By Lemma 4 we may
assume that all cyclic components of ¢ are in the form (22), i.e. ¢,, = w;b;. Put
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w=uw ®-- - Dwgandb=>b;d---Bb;. Then ¢ = wb and wqw = bw € Q, hence
bwwb = b € Q2. If b? is a noncentral upper triangular matrix, then b%cb%o~!
is also a noncentral upper triangular matrix for some o € SL,(L). Thus we will
have a noncentral upper triangular matrix in Q. If 4% is a central matrix, we
can apply Proposition D. ]

LEMMA 6: Let Q be a conjugacy class of a noncentral upper triangular matrix
in SL,(K), where K = GF(2) or GF(3). Then Q* contains a transvection.

Proof: Let K = GF(2). Then we can take u € @ in the form
u=Jg, B Jk, ©...0 Jy,

where Ji, is the Jordan block of the size k;. We may assume ki1 > 1. Thent =
u” 9, (1)uts, (1) is a transvection. Since every unipotent element in SL,(GF(2))
is real, we have t € Q2.

Let K = GF(3). Suppose Q is not semisimple. Then we may take u € () in
the form u = Jl,’cl @ Jp, @ - & Ji,, where J,'cl = Ji, or aJk,(I_l, where ¢ =
diag(—1,1,...,1). Suppose k; > 3 for some j, then we may assume k; > 3. Put
up = J,’cl, Uy = Jry4otkyy M = ko +---+ k. There exists 6 € GL,,(K) such that
buyd! = usl. Let & = diag(a,1,...,1) € GLy,(K), where a = det § = £1.
Put v = 4; & 4. We have

(23) ')"ll,’)‘_1 = (5111161_1 @(5“2(5_1 = (5111.1(51_1 @u{l (S Q2.

Further, we have two possibilities,

(24) 6 u 6y 'z = ul!  for some z € SLy, (K),
or
(25) :1351’11,151_11‘_1 = 5011,1_150—1,

where z € SLy, (K), 6 = diag(—1,1,...,1) € SLg, (K).

In case (24) we have from (23) that (z® Ep)yuy (2 '@ En) = u; ' @uy ' =
u~! € Q2. Hence t = tox, (L)utex, (—1)u~! € Q4. But one easily checks that t is
a transvection.

Now let us have (25). Then(z ® Ep)yuy (27! @ Em) = Soui 05 @ uy’ =
ti(1) (a7 ®@uy') = tia(1)u~! € @2, and we obtain t12(1) € Q2.
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Let k; < 2 for every j. We may assume k; = 2. If | is odd, then the element
ug consists of an even number of Jordan blocks of size < 2. Hence us is real
in SLn(K) and therefore v = u; ® u;' € Q. Thus we have a transvection
u' = ul®E,, € Q% Ifliseven, we put uy; = J,’CIGBJkQ, Uy = Jg; @ @Jy, m=
k3 +---+ k. Thus uy is real in SL,,(K). Hence v’ = uy & u;l € Q. Now we
only need to obtain a transvection in SLy, 4k, (K) in the form u;2u;27!, where
2 € SLy, 4&,(K). If ky + ko = 3, then u? is a transvection. Let k1 + ko = 4, then
uy is real in SL4(K) and the element toq(1)ustoq(—1)u;" € Q? is a transvection.
]

Now we return to the proof of Proposition H: Let S be the set of all transvections
in SL,(K). Then
(26) SuS*yU-.-uS™t! = 8L, (K)

([E1)). Since every transvection is a product of two transvections (here n > 3),
(26) implies

(27) s+l = QL (K).

Our statement follows from (27) and Lemmas 5 and 6. ]

6. Proof of Proposition 1

Recall that we consider here only classical groups G of rank > 3 other than of
type Ar.

ProPOSITION I: Let ¢ = 2/u’ € C for some 2’ € Z(G) and v' € U,v/ # 1.
Then C* contains an element of the form zgu, where z € Z{G), g1 € G1, g1 ¢
Z(G]), ueV.

Proof: The element 4’ can be presented in the form ov, where 0 € Gy, v €V
(recall that v € U < P = G1V). If 0 # 1, then obviously every power of C
contains a desired element. Thus we may assume ¢ = 1 and g = 2'v.

Now we consider different cases.

B,, r > 3. Here

(28) v = H-Tq H$€i+€j)
i=1 i

where z., € Ue,, ZTe,e; € Ueite;r because V = (U, U€i+€j|1 < 4,7 <)
(We use the notation of [Bou].)
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Note that here G; ~ SL.(K). Put V;j = (Uétﬂlll < 4,7 £ 1), then V) is
G-invariant. Moreover, if we consider the factor group V/V| as G)-module,
we obtain the natural action of the group G, ~ SL.(K) on the r-dimensional
vector space V/V,. Thus, conjugating v by appropriate elements in G|, we can
get Ty = Tey = -+ = T, = 10 (28). If T, v, # 1 in (28), then we may
assume [ = 7 (we can get this by conjugation by an appropriate element 1w,
where w € W(aa,...,ar_1)). Put uy = I_I:;ll T, te., U2 = I_[l‘jq Te +¢,- Then
g = 2'v = 'z wmup = 2wz uz and w, gw; ! = Uiz ug, where 1 # 4y =
12} 2. _. € Gi (here 2/ _, = w Te 4, w'). Thus we can get here an
appropriate element just in C and therefore in every power of C. (Indeed, the
image of such an element in Z(G)P/V is not in the centre and therefore every
power of its conjugacy class in Z(G)P/V contains a noncentral element.) Let
Te,qe, = Lforalli, j. Thenv = z,. If charK # 2, then x_CZxF,z:iz =TL, o, Te
# 1. Thus agam
we have an appropriate clement in C and therefore in C*. Let charK =
Then z¢,—, T, 7., ,, = xelxezzsﬁq, where 2o, _¢; € Ugymeys ZTey—ey # 1, 1::2 €
Uy T, # 1, T4 4, € Ueiters Te g, # 1 ([St, Lemma 33|, [Carl, Theorem
5.2]). Hence

. !
for some x_., € U_,, -, # 1, and &, _, € U, —e;y Tt o,

-1 _,2 _ 2
T Teyme, T, Ty e, = Te Ty Loy ey = Toyle yep € Z(G)CE.
—l — 2 " -1
Further, we, T,,%¢, 1, We, = Tey_¢, T, € Z(G)C® for T, = We, T¢ 4, W,

1. Thus we have an approprldte element in C? and therefore in C* (note that

here we don’t consider the central factor 2’

of g because it does not influence
these calculations).

C,, r > 3. Here

-
(29) v= H:rge‘ Hzelﬂj,
i=1 1]

where o, € Use,, Te,+e, € Ue, +¢,- We may assume T2, # 1 for some ¢ or we can
get an clement v’ which is conjugate to v, in the form v’ =2, 1, Zegte, * " Teytennr
€ Z(G)C (it follows from Proposition E). In the last case the element w,, 2’'v'w’
will be an appropriate element in C. Suppose z3, # 1; we may assume i == 1, so

Z2¢, # 1. Further,
(30) [‘T2£1 (a)v Lex—ey (b)] = T2¢y (iab2)z£1 +ex (:tab)

({St, Lemma 33], [Car1, Theorem 5.2)). By conjugating v by appropriate elements
in groups {Ue, -, } we can eliminate all factors of the form z., 4., in (29) (this
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follows from (30)). Thus we can suppose

r

(31) U = Ty, Ioe, H Le, e, -
2 ij#£1

1=
Further, there exists ¢ € (Uiy,) such that
(32) 0x¢, 07" = woe, hae, Une, s
where hype, € Hae,, uge, € Ua,. Note that ozg, 07! = 7y, for every i # 1 and

cr:rhﬂ]a_l = Le 1, if 1,5 # 1. From (31) and (32) we obtain

r
-1 X ., -1
m = ovo = 0T2¢, H“‘- H .IIC‘.HJO'
1=2 1,j#1

= w261h2c|712c|711 € Z(G)C

(33)

for some u; € V. Also, we have

(34) vo = (e hae,) T 01 (Wae, haey ) = Uge i e hae, € Z(G)C.
Note that
(35) (Wae, hae,)* = hae, (=1},

Now from (33), (34), (35) we have

(36) V3 = Vo) = szlulhgﬂ (—1)?1,2(1?},; = f?,g(] (—])ag € Z(G)C2
for some up € V. From (36), va = Z¢, e, vs2,, ., = hoe, (-1)7}, _,u3 € Z(G)C?,
where Ze,—e; € Ueymeyy Tey—e, # 1, ug € V. If chark # 2, then x| _ #

1. In this case, put vs = hy, (—1)vghye, (=1) € Z(G)C? Now vg = vsvg =
(e, e,us)? = 22, _us € Z(G)C? forsome ! _, € Ue—ey, 7/ _, #1, us € V.
Thus we get an appropriate element in C*. Suppose char K = 2. From (31) and
(30) we obtain ¥ = :cQ_C,vz;I_Ex = UL, Te, 4epy Where T,y # 1, Teqe, # 1.
Thus v0 = Ze, 4, T2., € Z{G)C?. (Note that in the case char K = 2, v? = 1.)
Then wy,, viw;,, = 2 _, T2, € Z(G)C? for some Loy o € Ugeys Ty #1
and hence we obtain an appropriate element in C2.
D,, r > 4. According to Proposition E we may assume

U= Tey+esLegteqLestes
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Also, we may assume Z¢, +., # 1. Thus w€2+ﬂz'vw;l+ﬂ =2'r,  T,_,u€C
(for some u € V) is an appropriate element in C.

2A5,_1, 1 > 3. Here the root system is C, and the proof in this case is the same
as that for C,. The only difference is that here we use the commutator formula
[Z26, (@), Tep—e, (b)] = Toe, (£abb®)z, 1, (£ab) instead of (30) ([St, Section 11,
[Car 1, 14.4, p. 265]).

2As-, r > 3. Here R = B, and therefore the element v can be written in the

form (28). As in the case B, we may assume
(37) U= T, V1,

where v; € V) = (U, 4., xh((),b,)|l <i<j<r b € K). If among the factors
of vy there is z, +,, # | for some k, [, then

(38) Ul = Tep4 6 Tey (Ovbk)fel(oybl)“?a

where vy € Vi, and among the factors of v, there is no element from the root
subgroups Ue,, U, Uc 4¢,. Let s € K*, 589 = -1, s(s®)"! # —1. One can
easily check

—1(L),

hek—e,(sjfl’(urq(a)hu-—ﬂ(s_l) = 'Iek+€z(3(se)
(39) Re—er(8)Ter (0, ) hey —e, (s7") = £, (0,55%bx) = z, (0, —by),

Rer—er (8)Te (0, b) ey~ (s71) = 24,(0, (5°) 7 ly) = ., (0, —by).

Now from (37), (38), (39) we get v’ = vhe,—,(8)Vhe,—e(s71) = 2L ! L v €

€17 Er+€
Z(G)C?, where x, ,. # 1,v5 € V; and among factors of v} there is no ele-

ment from the root. subgroups U,,, U.,, U, +,- We may assume | # 1. Then

we vy =, 1l _ v € Z(G)C?, ay, ¢, # 1. Thus we can find an appropriate

element in C? and therefore in C?. Let
(40) U= I, Hz(‘((), b;).
1=2

Here z., = x., (a1, by). Further, let § be the image of the matrix
diag(s,...,s, s77(s%)".(s%) 7", (s%) ") € SUprp1 (K),

s€ K*, ss® = —1. One can check

51",(0,1, b])(s_l = .’L‘cl(8r+l(88)—ra1, —h,),

(41) 8z (0, b,)67" =z (0, =b,).
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If char K # 2, then
(42) sTH(s®) T £ -1

(indeed, s"*1(s®) -" = —1 implies (s®)"*'s~" = —1® = —1 and therefore ss® =
1 which contradicts our choice of s). Thus, if a; # 0 and char K # 2, then (41),
(42) imply

v =vévd ! =z, (a}, b)) € Z(G)C?,

where a] # 0. Hence

T_ vzl =0z, -, € Z(G)C?

€2

forsome z_¢, € U_q,, Te,—e; € Uey—e3y Tey—e, # 1. Thus we have an appropriate
element in C? and hence in C4. If a; # 0 and char K = 2, then

(43) v? =z, (0,0:09) € Z(G)C%.
Further,
(44) [Ze, (@, 0), Tegeey (€)] = Ly pey (£0®) e, (Fae, £cc®b®)

([Car1, p. 265]). From (43) and (44) we obtain

g .2 2.1 ... 4
V=0, VIE T Tt v € Z(G)CH,

where 2, ¢, € Ue,_e,, e, € Uy, Teiiez € Usybens Teyreg # 1. Now tir v/ =
Te,To,_., € Z(G)C*. Thus we have an appropriate element in Ci Ifa; =0 we
may assume b; # 0. Then by (44) the element z,_,v 31::21_(l
T, +¢, 7 1 and we obtain the case considered above.

2D,41, 7 > 3. Here R = B, and therefore v has the form (28). If Ze, = 1
for every ¢, then we can apply Proposition E to obtain an appropriate element

has the factor

in C. If z,, # 1 for some i, we may assume ¢ = 1. Further, if char K = 2,
_ -1 _ ’ r !

then vy = Te,—, vz = VT2, 4o, [[io3 Terterr Where i # 1. Hence

v = 0 = L0, 4o [1ieaTeoree € Z(G)C? (note that v? = 1 if char K =

2). Then we,vow, ! is an appropriate element. Let charK # 2. Put h =

Beo_y—er(=Dhe, 6. (1) heyee, ((=1)771). One can verify that hr, h™! =
z;’ for every ¢ > 2. We have

(45) v3 = vhoh ™' =z [] =t € Z(G)C?.

€,+€;

We may assume vy # 1. Indeed, if v3 = 1, we consider the element vy =

Te,vz; huh™! instead of v3. The element v, has also the form (45). Now our
proof can be completed in the same way as for B,. 1
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PROPOSITION J: Assume G is not of type ?Ay.. Then the set C? contains an
element of the form h, (x1)g1v, g1 € G1, vE€ V.

Proof: Here R = B,,, C,,or D.; W(G) ~ AW(G,);, W(G,) = S,, A Q W(G),
and A is an abelian group of exponent 2. Further, as the set of representatives
of double cosets W(G) = |J, W(G))w;W(G1) we can take the set {wi}, where
wo =1 and for k > 1:

(46)
We, Wey,y * " We, if R=B,,
We =4 W2e, Waeyy, * - Wae, if R=C,,
Wey —eh 41 Weterps Wexpz—enpsWenpatenss Weroy—e, Wy e, if R=Dr.

(Note that in the cases B, and C, the number k£ can be arbitrary, while in
the case D, the number of integers in the interval [k, r] must be even.) Hence
G =J; PwP [Car2, Proposition 2.8.1]). Since C ¢ P, one can find an element
z € C of the form z = w;p, 1 # 0. The element p can be written in turn as
p = hq, (s)gju for some g] € G, u € V. Thus

(47) T = wiha, (s)g1u, ©#0.
By (46) we can express w; in the form
(48) Wi = Wp, Wp, + - W, Wa,

for some roots 31, ..., 08, (note that the last root in the expression (46) coincides
with a,). The elements wg, commute with each other and with w,,. Moreover,
W} = hg (—1) and (wa, ha, (5))* = ha,(-1). Thus

(49) (@iha,(5))? = hg, (=1)hg,(=1) - hg, (=1)ha, (= 1).

Further, every element in the group H can be written in the form h, (t)h; for
some t € K* and some h; € HNG;. Therefore, (49) yields

(50) (Wika, (5))? = ho, (£1)hy
for some hy € HNG,. From (47) and (50) we obtain (w;hq, (5)) "' z(wiha, (s)) =
g uhg, (£1)higiu = h, (£1)g1v € C?, where gy € Gy, vE V. ]

PROPOSITION K: Let G be a group of type 2A,,. Then C* contains an element
of the form ¢yv, g1 € Gy, vE€ 'V,

Proof: In the same way as in the proof of Proposition J we can take an element
z € C in the form W, We,,, - We, ha, 914, Where hq, = hq (s) for some s €
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K*, ¢4 € Gy, u € V. Note that the elements w,, commute with each other and
with W he,.. Hence

(51) T = We, ha, Wey  * e, g1t = We, ha, 01,

where w = W, - - W, _,. Further, there exists an element z._ € U, such that
(52) Te, We, o, = 2122,

where z; € U_,, @2 € U, ([EGII)). From (51), (52) we have

-1 o g -1
Y1 = fEerl‘iL‘er = .’L‘l.’L‘ngl’U,l‘Er

(53) _ « 10 -1 _ o 7 R W
= $1w182g1U$€r = Iwg i = Wrig Uy,

where

(54) th=wlmwel,, oy =0 nwe U,

and u; = (g7 '2hgl)uz ! € V.
Since z; € U_,,, it can be expressed in the form z; = z_. _(a,b) for some
a,b € K. Further,

(55) Wz e (a,b)w = z_ (Fa,b).

(This equality can be checked easily for the corresponding matrices in SUs, 11 (K);
therefore it holds for G ~ SUsq,11(K)/Z, Z < Z(SUg.41(K).) Also,

(56) he (=1)2—c, (a,b)he, (~1) = z¢, (—a,b)
([St, Section 11}). By (55), (56) we have an element h = h,_(%1) such that
(57) hz‘lhall',l =T_, (0, bl)

for some b, € K. Put # = hzih7 'z}, g2 = hgih™), up = huih™!, yp =
gouzhz1h~ 1 (note, hwh™! = & because h = h,, (+1) and among the factors
of w there is no ). Obviously y; € C. Put y3 = yy1. By (53) and (54),
Y3 = gotiagiuy € C? (note w? = 1). Put y4 = Zgjuigous = Zgsus, where
g3 = giga, us = g; urgous € V. Obviously y4 € C?. Further, let s € K*
such that s3 = —1. Then from (57), hq, (8)Zha,(s71) = z_(0,88b;) = £
Put ys = ha, (8)Ysha, (s71) = Z7lgsuy, where g4 = hy, (s)g3ha, (s71), us =
Ra,(s)usha, (s71), and put ys = gauaZ~*. Then ys € C? and Ygys = gatagsus =
g1v € C4, where g1 = gag3 € G1, v = g3 'uagsuz € V. [ |
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PROPOSITION L: If z = h, (£1)g1v' € C for some g; € Gy, v € V, and if
ha, (£1)g} ¢ Z(G) (in the case ? Ay, we suppose z = giv' and g ¢ Z(G)), then
the set C* contains an element x = g1v, where g, € Gy, g1 ¢ Z(G,), ve V.

Proof: Put I' = (h, (£1), Gi). v = ha (2l)g;. If v ¢ Z(T'), then g =
yoyo~! ¢ Z(T') for some o € Gy. But g € G;, and we have

vy lozo™! = y(y'y ) ove ) ov'o ) = yPu' v (vovo (ov'e )
=~*'v 2gov'0 " = gu, where v = g7 (v?v'y 2g)ov'cT € V.
Thus we have an appropriate element just in C? and therefore will have it in C*.
Let v € Z(I'). We consider the different types.
B., r > 3.
The inclusion v € Z(I') implies here

Y= h‘el—fz(s)héz -53(32) e hfr_l—(r(sr_l )he.»(t)

for some s, t € K*, s" = t2. It is easy to verify that
Y

1

Yz (@)Y = z(,(50),

(58)
YTe,+¢; (0)7_1 = Te, e (52(1)

for every i, j. Sincey ¢ Z(G), we have s # 1. Suppose s = —1 (here char K # 2).
Using Proposition A for Vo =V, V| = [V, V], we can get an element x; that is
conjugate to r and has the form x; = yu, u € [V, V| = (U('H]ll <i#j<r).
Suppose u # 1. Then z? = v2u? = u? # 1 (note that 42 = 1 because s = —1
and 72 € G, and u? # 1 because char K # 2). Thus we have an element u? # 1
in C?nN (Ue, +¢, |1 <1 # 7 <r). Applying Proposition E we can get an element
2 € C?inthe form @& = Tey+eaLesteq - - Lhus welaw,—ll is an appropriate element
in C%2. Hence we can get such an element in C%, too. Now let v = 1. Then
73:(1@0'74;10_195;1 =z, v e ! =2, € C?for some z,, z. € U, Z¢,, 2o,

€
1. Since char K # 2, we have z_,, z7!

- !
@8 e, = Tey—e,Te, and T, ¢, # 1. Thus we

obtain our clement in C?. Let s # £1. We may assume x = ~ (this follows from

-1 — 2
ctez = Tey+e, € C° for some

(58) and Proposition B). Further, woydy ' Te, 46,77
Terters Loy vey € Uerters Terdens Thyyey # 1. Now 1, 2y, 4w, is an appropriate
element in C?.

C;.

The inclusion ¥ € Z(I') implies here v = hae, (S)h2e,(8) - - - hae, (s) for some

s € K*. Since v ¢ Z(G), we have s2 # 1. Further, yza,(a)y™} = z2,(5%a) and

1

(59) Ve, +e; (a)'y— = Leg+e, (320')-
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Using Proposition A we may assume x = . Thus

. . ._l _] ._l

w2(;(w07wo )551+527Igl+52“)25[

is an appropriate element in C? (for some Z¢, 1¢, € Ueytepy Terter 7 1)-
D,.
The inclusion y € Z(I') implies here

Y =he ey (S hep—es (2) -

by ey (8T e, —e, (8T (722

r—1t€r

(if r is odd, then s should be a square in K*). The formula (59) also holds here
and using Proposition A we also may assume z = v. If r = 2k, then Woyoy ! =
~~! and therefore 111€2+€3(w07d)0‘1)z(1+€2'ym;1+£31b;1+€3
element. Let r = 2k + 1. Then w(e,) = —¢,; for some w € W(() and for every
i > 1. Thus § = wyw ™'y = he,-e,(8)he, +¢,(8) € C%. Further, there exists

w; € W(G) such that 8wy’ = §~'. Thus we have 1i)161b1_1x(1_€26z;1_(2 =

€ C? is an appropriate

’ 4 ! !
¢ \—eg € C? for some e, e, Ty, ¢, € Ueimeyy Teymeys Tey—ey # 1

2
A2r—l-

The inclusion v € Z(TI") implies here vz, (a)y~

Z

1 1

= 3326.(3‘1)7 Y Te,+e; (ay=" =
Te,4¢,(sa) for some s € k and s # 1 because v ¢ Z(G). Thus again we may
assume z = <y (Proposition A). The preimage v in the group SU,.(K) can be
represented by the matrix 4 = diag(t,...,t,(t®)71,...,(t®)~1), where tt® = s.

(60) 10wy € Z(G).
Let T1 = YTe,+eV%0 he, = V2o 1e,- Then 2y € C2. If 42 € Z(G), then
e, 21w, = v*z! _,, € C? is an appropriate element for some z _., € U, _e,,

z! # 1, because v? = (hq, (£1)g1)? € G;. If ¥* ¢ Z(G), then using (60)

€] —€2
we obtain o = W2y V2T, e = 0T 4,
Z(G)NG,. Thus u']ela:gu')(‘ll is an appropriate element in C*.

24,,.

Let 4 be the preimage of v in SUz,41(K). Then 4 = diag(t,...,t,t="(t®)",

()1, ..., (t®)~1). Using the form 7 one can easily see

€ C*%, where § = woy?dy'y? €

(61) VT, (,0)77" = 2, (71 (t%) Ta, 1t°0),
TTe,+e, (a)'Y—l = Te,+e, (ttea)

for every i, j. If t"*1(t®)~" = 1, then t"*! == (t®)" and therefore (t"+!)® = ¢".
Thus t® = t~! and hence tt® = 1. In this case (61) and the condition v € Z(T')
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imply v € Z(G), which contradicts the assumption of the proposition. Thus
¢ +1(¢®) 7" # 1. We may assume v’ € (¢, (0, b;), Ue, e, |1 <4,5 < 1) (see Propo-
sition A). Moreover, v’ = 1 if t/® # 1 (see Proposition B) or #® =1 and v’ =
v'y. Suppose tt© # 1. Then z = 7. We have Z¢__,4e, 720 1c. = VT _ e,

for some z¢,_ 4e,, Z. _ 4. #1. Putd = Woywy ty. Using the form 7 one can

1 ’ =1 _
erorte,Wr T =

€ C? is an appropriate element because § € G (recall v € Gy in the
case 2A,,). Suppose #® =1 and z = yv' = v'y. If v/ # 1, then we may assume

see that w, dw; ! = 8. Thus wr(wovwo‘l)('yx;r_ﬁ&)w; = w0z

1
61.51‘—1 —€r

(62) Ul = Teyterley (0’ b1)£52 (Oa bZ)Ui’

where e, e, € Ueigess Teyte, 7 1, V1 € (Ueiae;r T, (0, b,-)‘z',j # 1,2). Indeed, if
among the factors of v’ there is z, 1, # 1, then conjugating z by an appropriate
w, w € W(G1), we obtain k = 1,1 = 2. If all factors of v have the form z., (0, ;)
and z, (0, bx) # 1 for some k, then conjugating = by an element in the group
Ue,—e, We can obtain a nontrivial factor z., +¢, (see (44)). Thus we suppose (62).
From (35) we obtain for some h € H

(63) vhv'h b =12l | of,
where z; | # 1 and among the factors of v}’ there are no elements from the

groups Ug,, U, U +e,- Since x = yv' = v'y, using (62), (63) we obtain
(64) 21 =ghah™' = wh'h ly =2l o € C2
Further, for some h; € H

(65) hv'hit =1

(it follows from (61)). From (65)

(66) Ty = zhyzhy! =42 € C2.

Let 6 = woy?wy 'y Since ¥ € Gy, we have § € G;. From (64), (66)

(67) I3 = tbol‘zwo—l.’lil = 5$,€1+62’U;I € C4.

Further, . dw_* = & (this follows as above from the form ). From (67) we have
T4 = We, T3W, 1 € C* as an appropriate element. Let v’ = 1. Then z = 7. From
(61)

(68) ze,zz; =7z, €C
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for sorie z,,, x! 1. I the same wa,
1 €1

(69) z;,v€C,
where x, z/ =z, (0,b;), b1 # 0. From (68), (69)
(70) y=r, T, Y= v¥r,, (0,b)) € C?

(recall that v commutes with ¢ (0,,)). From (44) and (70)

(71) n = I(,—qyf:,;_el = ’YQIC,(Ovbl )‘T('g (Ovb’))-[el+e; < sz

where ., 1, # 1. Further, wow(;l € C. Using the same arguments as above we
obtain

(72) Yo = woy Wy 'z, (0, -by) € C2

From (71), (72)

Yys = Y20 = w072d6172£€2(0vb2)xe1+n € Cq-

! is an appropriate element from C*.

Now ¢, y3uirg,
2
D, 1.

Since v = he {1)g; € Z(T'), we have gy € Hy = Gy N H. Then

Y= hs,—c«;(sl) co h(, _1—-sr(sr—l)her(il)v

where 5, € k*. All parameters s;,...,8,._1, £1 in the expression for v belong to
3 I ’7

k, so wyywy ' = v1. Now the proof proceeds as in the case B,. [ |
0 p p

Now we can prove Proposition 1: According to Propositions J and K one can
find an element & = g,v in C*. If v = g, ¢ Z(G), using Proposition L, we can
find an element 2’ = 2’glv, ¢} ¢ Z(G), in C'6. Ify =g, € Z(G) and v # 1, then
we can apply Proposition I and again obtain an appropriate element in C'6. Let
z € Z(GYNC". By Proposition D we have an element 2’ = zu, 2z € ZIG), u €
Uu#1,in C¥if R # Cy; or 2’ = zha(~1)z4(s) € C8, 2’ ¢ Z(G), for some long
root a, z € Z(G), if R = C,. Now if R # C,, then we apply Proposition I and
we obtain an appropriate element in C32. Let R = C,, then by conjugation by
an appropriate element w we can get @ = a,. Further, in the case C, we have
|Z(G)
L and obtain an appropriate element in C*?. Note that if we find an element
of the form zg,v, ¢ ¢ Z(G,), 2 € Z(G), in C™ for some m, then we can find
an element of such form in any power of C™. Thus in all cases we can find an

=1or2and z € Gy or 2he (—1) € G;. Thus we can apply Proposition

element £ = zq1v, ¢ ¢ Z(G), in C3? for every noncentral conjugacy class C.
]
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7. Proof of Proposition 2

We shall use here Proposition C. We put I' = 13, V =V, F=Gy,and Q is the
conjugacy class of the element g;v (from Proposition 2) in P. Further we put

/= 2-rank G if |K| > 4 (or ‘k| > 4if G is of type 2D, 1),
~ | 16(rank G +1) if |K| <4 (or |k] <4 if G is of type 2D,4).

The group G here is isomorphic to a factor group of SL,.(K) (or SL.(k) if G is
of type 2D, ), (r = rank G). From (21) (see Section 5.2) and Proposition H we
get

(73) o' =a,

where Q is the image of Q in G, = P/V.

Now we define a subgroup D; < G1 in the following way. If char K = p # 0,
then we put Dy = (z, (t)[a € {ai1,...,a,-1) ,t € GF(p)). Thus in this case
the group D is a factor group of SL,.(GF(p)). If char K = 0, then according to
Proposition F we can find a,b € G; such that the group (a,b) is dense in G.
Put Dy = {a,b). Since every Chevalley group is generated by two elements, the
group D; in the first case is also generated by two elements which we also will
denote by @ and b.

Both generators a and b of the group D are noncentral elements. Using (18)
and Proposition H we obtain a,b € @e/zv This inclusion implies that D; <
(g1,---,9¢), where g1, ..., gs are some elements in C. Put D = (g1,...,ge).

Now we will check the condition (b) of Proposition C. Obviously, we can check
the condition (b) for the subgroup D; of D instead of for D. Moreover, in the
case of char K = 0 we can check the condition (b) for any dense subgroup of
G (note that the action of G1 on V;/V,,, is algebraic). Hence in the case char
K = 0 we can check the condition (b) for (z4(t)| @ € {@1,...,ar_1), t € Q)
(here Q is the field of rational numbers), i.e. for a factor group of SL.(Q).

B, r>3.

Here V = (U, Uye; |1 < 4,5 < 1), Vo =V, VI = (Uegq,|1 < 4,5 < 7).
We have G ~ SL,(K) and V;/V; is an r-dimensional K[G;]-module, where the
group G, ~ SL.(K) acts in the natural way. Hence I(SL.(K'))Vo/Vi = Vo/Wi
for every subfield K’ C K. Further,

(74) [wfk—ej(l)’ Teite; (a)] = Teitex (:l:a)'

Hence every element of the K[G;]-module V; can be presented (in additive form)
as a sum of elements (z¢, _,(1) — 1)z, 4, (a). This implies the condition (b).
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C,.
Here Vo =V = (Use,, Ue,4e,|1 < 4,5 < 1), Vi = 1. We also have (74) and
(75) [Ir,—f.(l)a T2, (a)] = T2, (£a)Te, 4e, (a)

([St, Lemma 33}, [Carl, Section 5.2]). These formulas show that every clement
in the K[Gy]-module V is a sum of elements of the form (z¢,_, (1) — 1)v, where
v € V. This gives the condition (b).

D,.

Here Vy = V = (Uclﬂ]] 1 <i<j<r), Vi =1. The proof is the same as
above.

2A21’—11 r Z 3

Here Vo = V = {Us,,, UE.+€]|1 <i<j<r), Vi =1. We also have (74), (75)
([St, Section 11}, {Carl, p. 265]), and can check the condition (b) as in the case
Cr.
2A2r, r 2 3.

Here Vo =V = (U, ,Ue 1, |1 <i,5 < 1),

Vi = (26,(0,0),Uc 1, |1 <45 <7, bEK, b+ 6% =0),

Va = (Ue, 4¢, |1 <1i,j <r). We have
(76) [Ze,—¢, (1), z¢,(a,b)] = ze,(£a, £b%)z, 4o, (£6°)
([Carl, p. 265]), and also (74). Using (74) and (76), we again obtain the condition
(b).

2I)r—f—1~

Here Vo =V = (U, Ue, +e, Il <uj<r), i = (Uc,+e, |1 <4,j<r). We
have
(77) [mc‘_q(l), ze,(u)] = Te, (U)Te 4, (Futt)
([St, Section 11], [Carl, p. 265]), and also (74). Using (74) and (77) we obtain
the condition (b).

Now we have checked the condition (b) and have the condition (a) from (73).
Thus

(78) P =Q*
and
(79) 2P cCc¥

where 3¢ = 6r if | K| >4 (or | k| > 4 in the case 2D, ;) or 3¢ = 48(r + 1).
Note, instead of (78), (79) we can write P = Q3+™ P C C3+™ for every
positive integer m. Thus we have z) P C €8, ]



Vol. 111, 1999 COVERING NUMBERS FOR CHEVALLEY GROUPS 367

8. Proof of M2

We prove here that for every positive integef r there exists a positive integer
dp = dp(r) such that

(80) cn(G) < do

for every proper quasisimple Chevalley group G of rank < r and for every finite
twisted quasisimple Chevalley group of rank < r.

First we consider the cases where G is of type A;, By (char K # 2), or C,.
For the case A; the inequality (80) follows from Proposition G. The case C, was
considered before, in M1. For By (char K # 2} we prove

PROPOSITION M: Let G be a group of type B, char K # 2, |K| > 5. Then
cn(G) < 448.

Proof of Proposition M:

LEMMA 7: Letg=zu € G, z € Z(G), u € U, u # 1, and let C be the conjugacy
class of g. Then C''%2 = G.

Proof: Put Gi = (Us(e,—ep))s V = (Uey, Uep, Uerte), P = G1V. We have
u = ov, where ¢ € U,, _,, v € V. We may assume o # 1. Indeed, let 0 = 1. We
Ay aSSUINE U = Z¢, Leyteqy WHETE T, 4¢, 7 1 (this is easy to get by conjugation).

Then w,,vw_}

<, 1s an appropriate element. Let @ be a conjugacy class of u in
P and Q its image in G;. We have @8 = (G (see (19)). The factor V/Ue, +¢,
satisfies the condition (b) of Propositon C with respect to the group D introduced
in the preceding section. (Indeed, V/U, 4, is a standard SLy-module.) Using
also (18) we get (as above) from Proposition C that Q4 = P/U,, .,; moreover,
V/Ue. +e, C Q' where Q is the image of Q in V/U, 4¢,. Since char K # 2,
every element of the group Uy, 4, is a commutator [u;, ug] for some u;, uz € V.
Hence every element of U, +, is contained in Q%2. Thus P = Q?*+32 = %,
Since the order of the element z is 1 or 2, we have P C C%. Thus U C C56 and
according to Theorem H: G = C12, B

LEMMA 8: Let C be a noncentral conjugacy class such that C* contains an
element from the center of G, then C?*** = G.

Proof: We proceed as in Proposition D. Namely, if g € C, then g7'z € C
for some z € Z(G). For some element ¢ in the long root subgroup Uz we have
that tgt =g~ is either a nontrivial unipotent element or a noncentral element
in (Uiq) where a is a long root. In the first case we apply Lemma 7. In the
second case we may assume that o = €; — €. Thus we have an element z € C?
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of the form r = z¢;, where ¢; ¢ Gy, g1 ¢ Z(G,). Then we can repeat the
considerations of the proof of Lemma 7. ]

Now we can prove Proposition M.

Let C be a noncentral conjugacy class of G. Then we can find an element
z € C? of the form z = h,,(+1)g1v, g1 € G}, v € V (see the proof of Proposition
J). If z € Z(G) or h,(£1)g1 € Z(G), then C?* = G according to Lemmas 7
and 8. Let h,,(xtl)g1 ¢ Z(G). If h,(£1)g; ¢ Z(T) for T = (h, (1), G,), then
C* contains an element of the form gjv’, where g) € G1, g} ¢ Z(G1),v' € V (see
proof of Proposition L). Again as in the proof of Lemma 7 we get C*112 = G.
Now let h = h,,(£1)g; € Z(I'). Then g, = h¢, _,(—1). Using Proposition A we
can obtain v = ., 4, . Then z? = h%? = v2 If v # 1, then v? # 1, so we
have a nontrivial unipotent element in C?. Thus C*!'2 = G. If v = 1, then C*

contains 1 and, applying Lemma 8, we obtain C*11%2 = G. |
Now we will prove (80) for all remaining cases. We need the following lemmas.

LEMMA 9: Assume G is not of type A, C,, By withchar K # 2, or °G,. Further,
let B € R and let {Uj} be the central series of Uy ( i.e. Uj — [U[,_l, Ug)). Let
23 € Up, z5 ¢ U™ Then hzgh ' = ;' mod Uyt for some h € H.

Proof: Let G be a proper Chevalley group. Then rankG > 2. For a group
of type Bj, char K = 2, we can take h = 1. Thus we may assume that G
is not of type B,. Then for every root 3 there exists a long root « such that
ho(—1)zo(a)ha(--1) = 24(—a) (if char K =2, then —1 =1 and h =1).

Let G be a twisted group. Consider groups of rank 1. If G is of type 24, then
Up = (zp(a,b)|a,b € K, b+b° +aa® = 0). Here U} = (z5(0,b)|b € K, b+b® =
0}, Ug = 1, and hg(-1)zs(a,b)hg(-1) = zp(-a,b), hs(s)zp(0,b)hs(s7!) =
z5(0, —b) for s € K such that ss® = —1 ([St, Section 11)).

Let G be a group of type 2B,. Then char K = 2, Ug = (zg(a,b)la, b e
K), U = (x3(0,b)|b € K), Uj = 1, and z}(a,b) = z3(0,t'), £5(0,b) = £5(0,0).
Thus we can take h = 1 here.

Consider groups of rank 2, i.e. 2A3, A4, 3Dy, %F,. The last is a group over a
field of characteristic 2. Hence we can take h = 1. Let G be of type 243, let a; be
a short root and a3 a long root. Then hq, (5)Za,(@)ha, (s7}) = T4,((55%)'a).
We can find s € K* such that ss® = —1. Put here h = hq,(s). Further,
ha,(=1)2q,(a)ha, (=1) = z4,(—a). Let G be of type 2A4. For short roots we
can use the same considerations as for 2A4,, and if 3 = a; is a long root, then
hay(=1)Za,(@)ha, (-1) = 24, (-a).
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The case 3Dy as well as the cases of rank > 3, all have the same proof as the
proof for untwisted groups. ]

LEMMA 10: Let G be a finite group of rank > 2, but not of the type % A,,., C,, By,
(char K # 2), or °Fy. Suppose |K| > (n|R*|+1)3. Then there exists an element
h € H such that h™ is a regular element.

Proof: The root subgroups for the groups considered are only one-parameter
groups, i.e. U, = (z4(a)), where a € K or k. For every root o € R we have a
homomorphism « : H — K*, defined by the formula hz,(a)h~! = z,{a(h)a).
It is easy to see that for the groups considered, ima O k* (if the group is not
twisted, we put ¥ = K) for every € R*. Let H, = {h“|h € H}. Then
aH,) D k*™ for every a (here k™ is the set of the nth powers of all elements in
k*). Put M = {J ¢ g+ (ker aN Hy), then

| Hall R* |

M| <
I I Ik*ni

Therefore, if |k*"l > |R+|, then we have an element b’ € H,, h' ¢ M. Obviously
it is a regular element. Since k* is a cyclic group, we have

n
Hence we have an appropriate element if |k*| > n|R+| or |k| > n|R+| +1. Since

]K| < |k|3, we have a desired element if |K| > (n|R+| + 1)3. ]

LeMMA 11: Let G be a group of type Ay, r > 1. Suppose |K| > (2|R*|n+1)2.
Then there exists an element h € H such that h™ is a regular element.

Proof: We have here U, = (z,(a)) if « is a long root, and U, = (z4(a, b)) if
is a short root. Thus we define «: H - K*, &: H — K™ in the following way:
a = a if a is a long root, and hzy(a,b)h™! = z4(a(h)a, &(h)b) if @ is a short
root. Thus we have 2|R+| homomorphisms «, & : H - K*, and one can easily
see that a(H), &(H) D k* for every a € R*. For the rest of the proof simply
repeat the proof of Lemma 10 replacing |R*| by 2|R+|. ]

LEMMA 12: Let G be a proper Chevalley group over an infinite field K, except
Ay, By, C,, then for every n there exists an element h € H such that h™ is a
regular element.

Proof: If K is an algebraic extension of a finite field, our statement follows from
Lemma 10. If not, we can find an element h € H such that (h) is dense in H
[Bo]. Obviously # is a desired element. ]
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Now we can complete the proof of {80): First we can omit any finite number of
groups in our considerations (for those we can take as an estimate of their covering
numbers, say, their orders). Hence we may assume that |K | is big enough. Let
G be a group not of type Ay, Bz, Cr, 2B;, %G, ?Fy. Let h € H be an element
such that A" is regular, where n = 22IRT| (such an element exists according to
Lemmas 10, 11, 12 if K is big enough). Further, let C be a noncentral conjugacy
class of G. Then there exists an element g € C of the form

(81) g= Uth2,

where 3 € U™, ug € U (see Theorem H). Further, let ug € U;, ug ¢ U4, where
U; is the ith member of the central series of U. Then uy; = zg,24, --- x5, mod

s

Uit for some z5, € Ug,. Since G is not of type 2@,, by Lemma 9 we get
(82) hzp h™! = xgll mod Uj4i.
We have g1 = g(hugh™)(hgh~")huz'h~! = uyhughugh~*huh='h € C?. Now

g2 = (ﬁulﬁ"lh)gl(ﬁulﬁ_lh)‘l = ﬁulﬁ—lhulh(wﬁwﬁ“l)
= (imliflhulh_l)h2(uQﬁuzﬁ_1) e C2

According to (82), ughuph™! = €, ¢, -+ 23, mod Uyyy for some zjy € Up,.
Carrying out this procedure 2|R+‘ times (recall that in the case 2A4,, we have
two-parameter roots) we can obtain an element § € C™ (n = 22|R+|) in the form
g = vh™, where v € U™. Since A" is a regular element, ¢ is also semisimple and
regular. Hence C*" 5 G\Z(G) ([EGI, 11, III]) and therefore C*" = G.

Since 2B, and %F, are groups over a field of characteristic 2, we may use the
same proof because a 2¢-power of a regular element is also regular in this case.

Let G be a group of type 2G2. We assume that K is big enough for H to
contain a regular element h. Again we present an element in C in the form (81).
We have g1 = guggu; ' = wphudwh € C?, go = uthgi(uih)™' = wjh%ud €
C?, g3 = guigou;? = uihuduih? € C3, g4 = (u h?)gs(uih?)~! = ufhdu € C3.
If uy € U;, then u3 € U4 because char K = 3. Since we have here U = 1, we
obtain in C?7 an element of the form vh%’. Since char K = 3, the element h?7
is also regular and therefore vh? is regular. Thus C** D 2G,\{1} and C'% =
2G,. ]
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