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1. In troduc t ion  

We are dealing with the following problem: Let. G be a group and let ~ be a 

set of subsets  of G. Suppose ,k TM = G for every X E ~ and for some positive 

integer n depth( l ing on X (here X ~ = {xlx2.. .x,~Jx, C X}); de termine  tile 

smallest  posit ive integer ~lo (if it exists) such tha t  X n'' = G for all X E 2 .  In 

part icular ,  we are concerned with the ca~e where G is a simple or quasis implc 

(i.e.(2 is perfect and G modulo its center is simple [GLS, Definition 4.6]} group 

and 2 is the set. of all nonidenti ty or noncentral  conjngacy classes of G. Here the 

integer 7z, is called the covering number  of G. We write Tie = en((;) .  

The  covering number  is known in the following cases: cn(A,~) --- in] if T~ > 6, 2 
and on(As) = 3 ([Dv]); cn(PSL2(K))  = 3 if K is a finite field and [K] _> 4, and 

cn (PSL2(K) )  -- 2 if K is an algebraically closed field ([ACM]); cn(Sz(2 2"+1 )) = 3 

([ACM]); c n ( P S L , ( K ) )  = n i f l K ]  _> 4 and n _>4, a n d e n ( P S L 3 ( K ) )  = 3 i f g  

is a finite field, [K] _> 4, or K is an algebraically closed field ([Levi). Also, the 

covering numbers  are known for all finite simple groups with order less than !() 6 

([Kar]) and for all sporadic simple groups ([Z]). 

In addi t ion to the exact  calculatiou of covering numbers  for some classes of 

simple groups there are es t imates  of such numbers  which also can be useful. In 

part icular ,  on(G) <_ rain (k(k - i ) /2 ,  4k2/9),  where G is a finite s imple group 

and k is the number  of its conjugacy classes (IAHS]). In [Gol] it has been proved 

tha t  for every simple algebraic group G over an algebraically closed field of char- 

acterist ic 0 and for every noncentral  conjugaey cla.~s C of G we have C 2~ = G, 

where r is the rank of G and C 2~ is the closure of C 2~ with respect  to the Zariski 

topology. Thus  C 4~ = G and therefore cn(G) <_ 4 �9 r ankG.  Recently Arad, 

Fisman and Muzychuk ([A FM]) proved tha t  if C is a nonidenti ty conjugacy class 

of a finite s imple group G and if ,~ = ]CG(9)], where 9 E C, then C n = G. 

The  purpose  of this paper  is to show tha t  there is a constant  d such that  for 

every qua.sisimple Chevalley group G (proper  or twisted) the inequality cn(G) < 

d. r a n k G  holds (here d is general and does not depend on the type, rank, or field 

of G). By Chevalley group here we mean a group generated by root subgroups  

corresponding to an irreducible root system in the sense of I1. Steinberg ([St]). 

Thus  such groups are always quasisimple except  for a few groups over small fields. 

In the case of twisted groups we consider only groups over finite fields. Thus  we 

consider all proper  quasisimple Chevalley groups over a rb i t ra ry  fields and all 

twisted qua.sisimple Chevalley groups over finite fields. It should be noted tha t  

all finite s imple groups of Lie type belong to the set considered. In general the 

constant  d emerging from our calculations is large. However, we believe tha t  this 
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constant should be small. In some cases we get better estimates for d than in the 

general case, e.g. if G is a classical group of rank at least 3 and over a field K 

with ]K] >_4, or ]k] > 4 i n c a s e 2 D ~ + l .  Here we can sayd<:_2 s . 3 .  However, 

our proof yields an estimate for d which is valid for all cases. 

For more information on covering numbers we refer the reader to the Lecture 

Notes by Arad and Herzog [AH] which contain results, motivation and applica- 

tions. There one finds also a discussion on lower and upper bounds. 

As mentioned above, the covering mlmber for the projective special linear 

groups has been determined by Lev [Lev]: cn(PSL~(K))  = n (IK[ > 4, n _> 4). 

Thus cn(G) :: rankG + 1 in this case, so cn(G) <_ 2 �9 rankG. Gordeev showed 

(see [Gol], [Go2]) that  cnB~ < 2r = 2 .  rankB~. Examples confirm that  this 

hound cannot be improved. For a large class of groups Gordeev established 

cn(G) _< 4- rankG. We expect similar results to be true for all Chevallcy groups. 

The referee informed us that  there is a preprint by Lawther and Liebeck [LL] 

dealing with related topics and using entirely different methods. They provide 

an upper bound for the conjugacy diameter cd(G) for a finite simple group G of 

Lic type, which is linear in the rank of G. They also discuss lower bounds for 

cd(G). It follows immediately from the definitions that  cd(G) <_ cn(G). 

2. N o t a t i o n  a n d  t e r m i n o l o g y  

2.1 GROUP THEORY. Let G be a group. Let 1 denote the identity of G and let 

Ix, y] = x y x - l y  - l  be the commutator  of the elements x, y in G. If X C G, titan 

X m = {XlX2" .x,n]xz C X}. h conjugacy class C is said to bc real if C -1 = C. 

Let I(G) denote the augmentation ideal of the, group ring K[G], i.e. I(G) =kere, 

where e: K[G] -4 K with elk = 1K and e (G) -- 1. 

Let N1 ~ N ~ G a n d  NI _<3 G. Then the group G acts on the factor group 

N/N1 by conjugation. If the group U :-: N/NI  is abelian, we shall say that  U is 

a G-module and we write the action oil the group U in additive form. Also, we 

let an element g ~ G act on jr. Thus g(u) means gng -1 mod N1, where u is the 

image of n e N in U -- N/N1. Note that  in the additive language the element 

(g - 1)(u) corresponds to [g, n] mod Nl. We say that  an element g E G acts on 

U without fixed points if the operator g - 1 on U is invertible. 

2.2. CHEVAI.LEY GROUPS (see [St], [Carl, 2]). Here R is an irreducible root 

system. We shall use the notation of N. Bourbaki ([Bou, Tables I IX]) for R ,and 

for roots. Thus R = A~, B~, C~, D~, E6, ET, Es, F4, or G2. The simple root 

system A = { a l , . . . , a ~ }  which generates R is numerated according to [Bou, 

Tables I-IX]. 
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In the case of twisted groups we attach the root system BT to the groups of 

type 2A2r and 2Dr; CT to 2A2~_1; F4 to 2E6; G2 to 3D4 (see [Car l, 2]). If 

dl . . . . .  Bs E R, then (~ l , . . . ,~ . , )  : = {'~ = mlfll + . . . .  ~- m,Znl  E R, m, E z}. 
l~lrther, R = R + U R -  where R + is the set of positive roots and R -  is the set 

of negative roots. 

Let K be a field. For a E R let Ua b c a  root subgroup. Then 

Go --= <xo(t) I t e K>, 

or U,~ = (xa(t,s)] t, s E K) or Ua -- (xa(t,s,q) I t ,s ,q E Ix') for twisted groups 

(see [St], [Carl]). Here Uo acts as a group of unipotent matrices on some vector 

spacc over the field K. The linear group G = (Ual a E R) acting on the same 

vector space will be called a Chevalley group defined over K ([St]). As in [St] we 

d c f i n e w a ( t ) = x a ( t ) X - a ( - t - ' ) x a ( t ) a n d w , , = w a ( l ) .  Then (_01 10) i s t h e  

matrix corresponding to wa in SL2(K). For the twisted group 2A2~ the matrix (00 
corresponding to w~ is 0 - 1  in SU3(K). 

1 0 
The automorphisms of the field K which correspond to twisted groups will be 

denoted by O and we will write t ~ instead of O(t) for t E K. The subfield of 

O-invariant elements will be denoted by k. Note that  for twisted groups we shall 

always assume that  K is a finite field. 

Let B = HU be the Borel subgroup corresponding to the decomposition R = 

R +tAR-.  Here H is a maximal split t o r u s o f G a n d  U = (Ua I a E  R+). Also 

U -  = (Ua] t~ E R - ) .  Let W be the Weyl group of R and N <_ G be a subgroup 

such that  H _<3 N and W ~_ N/H.  An element n E N will be denoted by ~b, 

wherc w is the image of n in W. We also use the notation ha(t) for t E K ~ (see 

[St]) for semisimple elements of (Ua, U_,,) and Ha = (ha(t) I t e K'). 

2.3. ALGEBRAIC GROUPS (see [Bo]). Let G be an algebraic group defined over 

a field F, let L / F  be an extension field of F. Let G(L) denote a group of L-points. 

If X C G(L),  then X denotes the Zariski closure of X in G(L). 

3. T h e  m a i n  r e su l t  a n d  ou t l i ne  o f  the proof 

THEOREM M: There is a positive integer d such that cn(G) <_ d .  r ankG for 

every quasisimple proper Chevalley group or quasisimple finite twisted Chevalley 
group G. 

The statement  of this theorem can be split into the following two results. The 

first, which we shall call M1, is exactly Theorem M, but for the cases where G is 
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a classical group, i.e. a group of type At, Br, Cr, Dr, 2A2r-1, 2A2r, 2Dr+l, of 

rank > 3. The second, which we call M2, says that for every positive integer r 

there is a positive integer do = d0(r) such that cn(G) < do if rankG _< r (here G 

is, of course, a quasisimple proper Chevalley group or a quasisimple finite twisted 

Chevalley group). The last statement is much easier to prove than M1 and will 

be established at the end of the paper. Thus we first concentrate on M1. Let G 

here be a classical group of rank > 3, but not of type At. The case Ar will be 

considered separately in Section 5. 

We choose a parabolic subgroup P C G corresponding to A\{ar}  (here G is a 

classical group of rank r). Then P -- L V  where L is a Levi factor and V -- R~(P) 

is the unipotent radical of P ([Car2]). The group L in turn can be presented in 

the form L -- HG1, where G1 = (U~la E ( a t , . . .  , a t - i ) ) .  Note that 

(1) G1 ~- SL~(K) /Z  or G1 ~- SL~(k) /Z 

for some subgroup Z <_ Z(SLr(K)) or Z _< Z(SL~(k)) (because we remove the 

last root a~ from the Dynkin diagram). Fhrther, pu t /5  = GIV.  

The first and most difficult step to prove M1 is 

PROPOSITION 1: Let C be a noncentrat conjugacy class of G. Then C 32 contains 

an element g = zglv where z E Z(G), gl C GI, gl ~ Z(G1) and v E V. 

The next step is based on (1), the results of A. Lev on covering numbers 

for SLn(K) ([Lev]), and some estimates of covering numbers for SLn(K) where 

[K I = 2, 3. We shall prove 

PROPOSITION 2: I r e  is a conjugacy class of G containing an element of the form 

g = zglv where z E Z(G), gl E G1, gl ~ Z(G1), and v E V, then zl/5 C C 64r 

for some zl E Z(G).  I f  in addition [K[ >__ 4, or [k] _> 4 if  G is of type 2Dr+l , 
then zl/5 C C 6~. 

From Propositions 1 and 2 we obtain 

zl/5 C C25"64~; 
(2) 

Z l / h C C  2s'6r ( if lK[ > 4 ,  or Ik[ > 4 i n c a s e 2 D ~ + l )  

for some Zl E Z(G).  Since U C 15 the inclusion (2) implies 

z1U C C 25"64r, zIU- C 625"64r; 
(3) 

z l U c C  2s'6~, ZlU-  c C  2s6r ( i f lKI > 4 ,  or [k[ _> 4 in case 2D~+l). 

Further, we use the following result. 
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THEOREM H ([EGI, II, III]): Let  G be a proper Chevalley group or a finite 

twisted Chevalley group, and let Q be a noncentral conjugacy class o f  G. Then  

for every h E H there is an element x C Q such that x = u~ hu2 where Ul E U -  

and u2 C U. 

Note t ha t  this is a generalization of a theorem of Sourour ([So]). 

According to Theorem H we can find an element x = UlZ~lU2, where Ul E 

U - ,  u2 C U, and zl is f rom (3). Using (3) we get 

X ~ C26"64r; 
(4) 

x ~ C 266~ (if [K[ _> 4, or [k[ _~ 4 in case 2Dr+l) .  

Since the  set C is invariant under conjugation,  (4) yields 

Q c C2~64r; 

Q c C 26"6~ (if I cl _> 4, or ILl _> 4 in case 2Dr+i)  

for all noncentra l  conjugacy classes Q and C of the group G. Since every element  

in G can be presented as a product  of two noncentral  elements,  we ob ta in  from 
(5): 

G : 627"64r; 

G = C  276~ ( i f i K [  > 4 ,  or Ik[ >_ 4 in case 2D~+l). 

This  will comple te  the proof  of M1. 

4. A u x i l i a r y  r e s u l t s  

4.1 GROUP THEORY, Let F be a group, V ~ F, and F = F / V .  We assume tha t  

the  group V has a central  fi l tration 1 = Vm ~_ V,~-I ~_ "'" ~_ Vo = V such tha t  

Vi _<] F for every i, every factor Vi/V~+I is a finite-dimensional vector  space over 

some field L, and the na tura l  F-act ion on Vi/V/+I (see 2.1) is L-linear. 

PROPOSITION A: Let  7 E F, u E V/. I f 7  acts without  fixed points  on Vi/Vi+l 

(see 2.1), then there is some v E Vi such that  

vTv -1 =- 7u  mod Vi+l. 

Proof'. T h e  opera to r  7 -1 acts also wi thout  fixed points  on Vi/V~+I. Hence 

(7 -1 - 1)v - u rood V~+I for some v E Vi. This  congruence in the mult ipl icat ive 

form gives us [~ - l , v ]  - u mod  Vi+l. Thus  v~v -1 = ~[~,-1,v] - ~u m o d  Vi+l. 

I 
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PROPOSITION B: Let 7 6 F. Suppose 7 acts without fixed points  on each factor 

V,/V,+I. Then  fi)r every u C V there is some v E V such that v'yv -1 = "yu. 

Proof: This  follows immedia te ly  from Proposi t ion A by induction. | 

PROPOSITION C: Let  C be a conjugacy class o f  F and let C be its image in 

F = F / V .  Suppose  

(a) -C k = F for some positive integer k, 

(b) there exists a sequence g l , . . . ,  9k E C (where k is the same  in (a) as in (b)) 

such that tile group D = (91 . . . . .  9k) satisfies I(D)V,/I/]+I = V~/V,+I for 

every i (hereI (D)  is the augmentat ion ideal of  L[D]). Then 

V C C 2k and F = C 3k. 

For the proof  of Proposi t ion C we need a few lemmas.  

LEMMA 1 : Let  A be a group anti let 91 . . . .  ,9.~, vi . . . . .  v., C A.  Then 

( V l . q l v l l ) ( v 2 g 2 v 2 1 )  "'" (V,sg, V.71) g21 . . .  g l  1 = 

[l'1, gl](.(]l [?32, .(]2] .ql 1) " ' "  (.ql . q2""gs - ,  [v,, gs] 9~_,-1...g~19~,). 

L e m m a  1 can be proved by simple cah:nlation. 

LEMMA 2: Let .q l , . . . ,g .~  E F, v l , . . . , v ,  E 11",, ul . . . . .  u~ C V,+l (here P, V, and 

Vi+l are as above). Then  ttle elements  

z = (vl gl vi- l )(v2g2v;-1 ) . . .  (v~.q~v21),9-21 . . .  g~ 

and 

y = ( U l V l g l V l l t t I 1 ) ( U 2 V 2 9 2 V 2 1 U 2 | )  . . .  (U , ,wsgsv -~ l~L-s l )gs l ' "  " g l  1 

belong to the group V,. Moreover, yx  -1 C V,+j and 

x = (1 - 9a)vl + g1(1 - 92)v2 + . . .  + 9192""9.~-1(1 - g,)vs mod I/,+1, 

y x  -1 - (1 - 91)ul +91(1  - 92)u2 + . . .  + 9 1 9 2 " " 9 , - 1 ( 1  - 9~)us rnod Vi+2 

(here we use the addit ive form; see 2.1). 

Proof: T h e  inclusion x , y  E V, and the congruence for x follow directly from 

L e m m a  1. Consider 

. . . .  lV--1 y x  1 = ( U l l ; 1 . q l V l l T L l l ) . . .  (UsVsgsv  s lUs 1)(Vs.q s s ) " "  (vlgl-Xv{1) �9 
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Pu t  gi = vigiv~ -1. From L e m m a  1 we get yx -1 E V/+I and 

(6) yx  -1 =- (1 - g l ) u l + g l ( 1  - g 2 ) u 2 W ' - - + g l ' " g s - l ( 1  -gs )Us  modV/+2 .  

Since 1 = Vm <1 . . .  <1 VO = V is a central  filtration, the opera tor  vi acts tr ivially 

on every factor  Vj/Vj+I .  Hence the opera tors  g and 9 coincide on Vi/V/+I. Thus  

in (6) we can change .0j to gj. | 

LEMMA 3: Let A = ( g l , . . .  ,gs} be a group and let L be a [iNd. Further ,  let M 

be an L[A]-module with d i m n M  < 0% and let T: M @ M (9 . . .  @ M ~ M be 

a m a p  given by the formula  T ( ( m l , . . . ,  ms))  = (1 - gl) ml  + gl (1 - g2) m2 + 

�9 " + gl g2"" "gs-1 (1 - g s )  ms. I f I ( A ) M  = M,  then imT = M (where i m T  is 

the image  of  T).  

Proof." P u t  m l , . . . , m i - l , m i + l , . . . , m s  = 0. Then  

(7) gig2"'" gi- l(1 - g i ) M  C i m T  

for every i. In part icular ,  (1 - g l ) M  C i m T .  Hence (1 - gl) i m T  C i m T ,  

which in tu rn  implies gl i m T  C i m T  (note tha t  i m T  is a subspace of M) .  Since 

gl is a linear opera to r  on the finite-dimensional vector space M,  we also have 

g~-I i m T  C i m T .  Suppose (1 - gl)M C i m T  and 

(8) g~l  i m T  C i m T  

for every l < i. Then  from (7) and (8) we have 

(9) (1 - g i ) M c  i m T ,  

which in tu rn  implies (as for gl)  

(10) g/=t=l i m T  C imT.  

Thus  (9) and (10) hold for every i. Now (10) implies tha t  i m T  is A-invar iant  

(recall A = (gl , . . . ,gs>) and (9) tha t  A acts trivially on M / i m T .  Hence 

I ( A ) M  C i m T .  But  I ( A ) M  = M according to the last a ssumpt ion  in our 

lemma.  Thus  M = im T. | 

Now we return to the proof  of  Proposition C: First  we will show 

(11) V C C 2k. 
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, . . . ,  g-~ g-1 . ~ k  Let gl gk be elements satisfying (b). Pu t  go = k k-1 "'g~-l- Since -- 

F ,  we can present the element go in the form go -- fovo, where fo C C k, Vo C V.  

Let v C V -- V0. The factor Vo/V1 is a D-module  satisfying the conditions of 

Lemma 3. Therefore 

v -- (1 - gl)v/1 -{- gl(1 - g2)v'~ + ' "  + gl 32"" "gk- l (1  - gk)v'k mod V1 

for some v ~ , . . . ,  v~ E V. According to Lemma 2, 

! / - - 1  /--1 Xo = (v lglv  1 ) " "  (v~ gkv k ) go -- v mod Y 1. 

Suppose 

(12) X i ---- (01 g l V l l )  - ' '  (0  k g k O k l ) g o  ~- V mod Y/+ 1 

for some Vl,. - �9 0k E V. Then v =- uxi mod Vi+2 for some u E Vi+l. The factor 

Vi+l/Vi+2 also satisfies the conditions in Lemma 3. Thus 

U ~ (1 -- g l ) U l  -[- gl(1 - g 2 ) u 2  + ' "  + g i g 2 " ' "  g k - l (  1 -- gk)?Ak m o d  Vi+2 

for some U l , . . . ,  uk C Vi+l. Using Lemma 2 we obtain 

( U l V l g l O l l u l l )  " " " ( U k v k g k O k l u k l ) g O X - i  1 =-- U m o d  Vi+2. 

Pu t  xi+l = (Ul  ~)lgl  O l l u l l )  ' ' '  (UkOkgj~lu-~l)go. Now we have 

(13) v ~ Xi+ 1 mod Vi+2. 

Since from the assumption (12) we can get (13), we can present every element in 

V in the form ( v lg l v~ l )  . . .  (vkgkv-~l)go for some V l , . . . ,  Vk E V (recall tha t  V 

is a nilpotent group). Since go -- fovo, fo E C k, we can obtain any element of 

V v o  1 in C 2k. But  V v o  1 = V because v0 E V, and we obtain (11). 

Now let 3' ~ F. Since ~k  = F ,  we have 3' = f v ,  where f E C k, v E V. Thus 

the equality C 3k = F follows from (11). I 

4 . 2 .  CHEVALLEY GROUPS. 

PROPOSITION D: Let  G be a Chevalley group (proper or twisted ) of  rank >_ 3 

(if G is of  type Ar we allow r >_ 2), and let Q be a noncentral conjugacy class of  

G. I f  z' c Qm for some z' E Z(G) ,  then the set Q2m contains an element of  the 

form zu, where z E Z(G) ,  u C U, u ~ 1, or G is a group of  type Cr and Q2m 
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contains a noncentral element  of  the form zhc~ ( - 1 ) x e  (s), where a is a long root, 

z �9 Z (G) ,  s �9 K 

Proof: Let a be a maximal positive root of R (or a = q in case G is of type 

2A2r), and let t ~ Ue (or t �9 Z(Uc1) in the case of 2A2r). We take t ~ 1. 

Since a is a maximal root (or a -- q ,  t E Z ( U q )  for 2A2~), we have t �9 Z (U) .  

~lr ther ,  there exists an element gt �9 Q that does not commute with t (indeed, 

G is quasisimple and hence G is generated by every noncentral conjugacy class, 

in particular, G is generated by elements in Q). We can write 9t = u@b I for 

some u �9 U, @ ~ N, b ~ �9 B. Since t does not commute with 9t, it does not 

commute with 9 = u - l g ' u  = @b, where b = b'u (recall that t �9 Z (U) ) .  Put  

t l  = 9tg -~ = @btb-~b -1.  Therefore tl �9 Uw(e), tl ~ 1. Since z ~ G Q'~, 

we get g- l z~  c Qm-1 and therefore ( t - X g t ) g - l z  ~ = t - l t l z  ~ �9 Q ' L  We have 

t -~ � 9  tl  �9 U~(e), t - i t 1  ~ 1 (by choice of g). Put  { =  t - i t 1 .  I f t i s  a 

unipotent element, one can easily get a nontrivial unipotent element of the form 

~rt~r-l[ for some a �9 G, and therefore one can get a desired element zu  E Q2m. 

If P r I and /2  is unipotent, then F z  '2 �9 Q2m is an appropriate element. 

Assume that t is not unipotent, and that F is also not unipotent or ~ = 1. 

This can happen only if w(~) = - a  (recall, { �9 (Ue, U~(~))). Put  G~ = (U+~) 

if G is not of type 2A2~ and put G~ = (Z(U• if G is of type 2A2~. Thus { 

is a semisimple element of G~ -~ SL2(K) or SL2(k) or PSLz(K) or PSLz(k). If 

G is not of type C~ and rank G >_ 3, one can easily check that the image of the 

homomorphism ~o : HG,~ -+ AutG~ given by the formula (fl(x)(y) = x y x  -1,  is 

isomorphic to PGL2(K) (or PGL2(k)). Hence the elements t, ~-1 belonging to 

G~ are HGe-conjugate (recall that a is a long root). Now let 7 be a root such 

that {a, ~/} is a simple root system for an irreducible root system of rank 2. Put  

M e  = (U~,~+j.y[ i > 0, j > 1). Then G~ normalizes Me and for every x �9 G~, 

x r 1, there exists an element m~ �9 M~ such that x m ~ x  - I  r m~ (we omit here 

the simple arguments concerning classical groups of rank 2 which imply these 

statements). Thus u = It, y] r 1 for some y C M~. Since tz ~ �9 Q'~ and t, t-1 

are HG~,- conjugate, we have f-lz~ �9 Qm and {z~yt- lz~y -1 = uz  ~2 �9 Q~"L Thus 

we obtain our statement. 

Consider now the case where G is a group of type C~. We have G~ -~ SL2 (K) 

(a is a Iong root by our choice) and t ~  Ge. S i n c e { =  t -~ tz ,  where t -~ �9 

U~, tl �9 U_~, the element t does not belong to Z(G~) .  Hence t is conjugate (in 

G~) to an element w~G(e)xe for some g �9 K* and x~ �9 U~ (see lEG I, Lemma 

21) and therefore to z e w ~ G ( e ) .  But 

(14) ( x , ~ h ~ ( e ) ) ( ~ , h e ( e ) z ~ )  = x~he ( -1 )x (~  = h e ( -1 )x ~  
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! for some xo �9 Uo. If h~(-1)x',, �9 Z(G),  then char K = 2, h~(-1)x'~ = 1. This 

means that t- is a real element. Then we can repeat our previous considerations 

t with Me, and obtain an appropriate element. If char K # 2, then l~(-1)x~ 

Z(G). Thus we obtain from (14) a noncentral clement ha(-1)x '~z '2 �9 Q2m. 
| 

Remark: The trick with conjugate long root elements t, tl used at the beginning 

of the proof of Proposition D is from [Va]. 

PROPOSITION E: Let G, G1, V be ~s in Section 3. Let v �9 V, v # 1. Suppose 

(15) v = r I  xr 
Z,j 

where x~,+~, E U,,+~, (recall that we use the numeration of roots of[Bou] here). 

Then the element v is Gl-conjugate to an element 

(16) 

V t ~ X e l + ~  2 �9 X~3h_c4 - - - , OF 

v' = x,,,,, . x2,2 "'" x2,r H x,,+,, and the root system R = Cr, 

where x,.+,j E U,,+,j, x2,, C U2,,, and x2r # 1 for some k, or 

v ' =  x,,(0, bl)-. .x~r(0, br) Hx~,+~ ~ and G is a group of type 2 A2~, 
i , 3  

where x~,(0, bi) 6 U~,, x~,+~j E U~,+~, and bk # 0 for some k. 

Proof." We may assume x~,+~ 2 # 1 in the expression (15). Otherwise we can 

conjugate v by some dJ, where w E W(GI) .  lqlrther, assume i, j, k arc distinct, 

then, according to Chevalley's commutator formula [Carl, Theorem 5.2.2], 

[x~,+~j (a), x~_~j(b)] -- x~,+~k(+ab), 

(17) [x~,+~(a), x,k_,,(b)] = 1 i f /  # i , j , k ;  

[x~,+~, (a), x~,_~j (b)] = 1 if R # C~ or G is not of type 2A2~; 

[x,,+,,(a), x,,_,~(b)] C U2,. if R = C~ and [x,,+,~(a),x,_,,(b)] 

= x~,(O, bi) for some b, C K i fG  is of type 2A2~. 

Conjugating v by an appropriate x,,_,2(b), k > 2, we can eliminate factors 

of the form x , ,+ , , ,  k > 2, in (15) or we obtain a factor of the form x2,~ ~ 1 

(in the case R = C~) or a factor x,~(O, bk), bk # 0 (in the case 2A2~). If 
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we obtain x2~ ~ 1 or x~(O, bk) ~ 1, we quit, otherwise we continue. Then,  

conjugat ing v by an appropriate  x~_~,  (b) we can eliminate factors of the form 

x~2+~k, k > 2, or we obtain factors x2~ ~ 1 or x~(O, bk) ~ 1. After such 

procedures we shall have an element v' tha t  is Gl-conjugate  to v and has the 

form v'  -- x~,+~ [I=,s> 2x~,+~j' or v' has factors x2~ ~ 1 or x~k(O, bk ) r l. 

Repeat ing this process with x'  x '  etc. we shall obtain an appropr ia te  ~3-~-E4 ~ E5 --~- E6 1 

element. I 

4.3 ALGEBRAIC GROUPS. 

PROPOSITION F: Let G be a Chevalley group over a field K,  char K -- 0. 

Consider G as a subset of A ( K ) ,  where A is the corresponding simple algebraic 

group. Then (a, b) = A for some a, b E G. 

Proof: There  is an element a E H such that  (a) = T, where T is a maximal  

torus of A (here H C T(K) )  ([Bo, Proposit ion 8.8]). Further, there is only a 

finite number  of closed connected subgroups of A containing T ([Bo, Proposi t ion 

13.20]). Let ~[ be the set of all such subgroups except the group A. Then  

every closed proper subgroup of A containing T is contained in NG(F) for some 

F E ~[. Thus  we have the open subset M = A \ ( U F e ~  No(F))  of A, satisfying 

the following condition: (m, a) = A for every m E M.  Sincc char K = 0, we 

have G -- A and therefore M M G ~ r I 

5. C o v e r i n g  n u m b e r s  for  t h e  g r o u p s  o f  t y p e  Ar 

5.1. ESTIMATES FOR COVERING NUMBERS FOR A1. In [ACM] it has been 

shown tha t  cn(PSL2(K))  = 2 if K is an algebraically closed field, or = 3 if K is 

a finite field. Here we will derive weaker results which hold for any field. 

PROPOSITION G: Let Q be a noncentral conjugacy class ofSL2(K),  IK[ > 5. 

Then 

(18) Q4 D SL 2(K) \  Z(SL2(K))  

and 

(19) 

Proofi 

QS = SL2(K). 

We can take an element x in Q that  has the form 

(0 o)(101) x = _ a _  1 for some a E g * ,  a E K .  
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Let f / E K * ,  [32 ~ + l ,  andle t  

Then 
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d =  (0~ flO1)'  

(;1) (0 0 y = d d - l d  - a  -1 --- 1 - a - 1 [ 3  -2 0 E Q. 

Thus 

o ) (1  
z = y z  = 0 _ ~ - 2  0 1 c Q2, 

where b = a + a/3 -2. 

Since f/2 r + l ,  we get that z is a semisimple regular element. Hence Q4 

S L 2 ( K ) \ Z ( S L 2 ( K ) )  ([EGI]). 

(Note that 1 E Q4.) Thus if ]K I > 5, then we can find f~ E K*, ~2 # :t:1, and 

we get (18). Note that (19) follows automatically from (18). II 

Remark:  We omit the group SL2(GF(5)) in our considerations, as we can do 

with any finite set of finite groups. However, cn(PSL2(GF(5))) = 3 ([ACM]). 

That means that the third power of any noncentral conjugacy class of SL2(GF(5)) 

contains a semisimple regular element of order 4. The square of the conju- 

gacy class of this element of order 4 gives the whole group SL2(GF(5)). Hence 

cn(SL2(GF(5))) < 6. 

5.2 THE ESTIMATES OF COVERING NUMBERS FOR At, r > I, IK[ > 4. Here 

we have the principal result of A. Lev [Lev, Theorem 2]: If Q is a noncentral 

conjugacy class of SLy(K), n > 3, IKI > 4, then 

(20) Qn D S L n ( K ) \ Z ( S L n ( K ) ) .  

The inclusion (20) implies immediately 

(21) Q2,, = SLy(K). 

Remark:  If we are concerned with the covering number for PSLn(K) only, there 

is a result of A. Lev [Lev] that is much stronger than (21); namely, cn(PSL,~(K)) 

= n if IKI >_ 4, n > 3, and in the case n = 3 the field K is supposed to be finite 

or algebraically closed. 



352 E .W.  EI,LERS, N. GORDEEV AND M. HERZOG lsr. J. Math. 

5 .3  ESTIMATES FOR COVERING NUMBERS FOR At ,  r _> 2, [K} = 2, 3. 

PROPOSITION H: Let K = GF(2) or GF(3) and let Q bca  noncentral conjugacy 

class o f S L n ( K ) ,  n _> 3. Then QS(n+l) = SL,~(K). 

Proof of Proposition H: 

LEMMA 4: Let E, i be matr ix  units. Let Fn 6 GL,,(K) be a cyclic matrix,  i.e. 
n n 

a matrix in rational canonical form: F .  = Ek=2 Ek,k-1 + ~-~,=l aiEin, ai 6 K. 

Then Fn is SLn(K)-conjugate to a matrix of the form 

(22) E a,j E,), 1 <_ i, j < n, a u 6 K 
*+j >_ n+l  

i.e. to wb, where 

and b is upper triangular. 

Proof  Clearly 

Then  for n > 3, 

( ) tU = . '  

1 

Ei:Ekl = 6:kEil, and t,: = 1 + E, i is a transvection if i :fi j .  

(1 + E2n) (1 + E n _ l , l )  V n (1 - En-l,1) (1 - E2n) 
n - - I  n - I  n n - I  

Z Z E ' E " Eo,  =(  Ek.k-,  + bl El,n-l) + ( a i Em + aj 
k = 3  1 = 2  i = l  2 = 1  

=Fn-1 + Mn-1, 

! I I  where Fn-1 is a cyclic matrix and bl, a,, a:  6 K.  The proof is now completed 

by induction. Observe that  our contention is trivial for n = 1 and n = 2. Also 

observe tha t  all entries in M,,-1 arc zero except for entries in the last row and 

the last cohmm and that  these zeros remain zeros in the next induction step. 
| 

LEMMA 5: Let Q be a noncentral conjugacy class of SLn(L),  where L is an 

arbitrary field and n >_ 3. Then Q4 contains a noncentral upper triangular 

matrix. 

Proof: We carl take a matrix q 6 Q of the form q = qn, �9 q,,~ (3. -- (3 qn,, where 

qn, is an n,-cyclic matr ix and nl + n 2 + . . . + n ,  = n. By L e m m a 4  we may 

assume tha t  all cyclic components  of q are in the form (22), i.e. q,. = w,b,. Put  
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w = wa ~ - " e w ~  and b = bl q ) ' " O b ~ .  Then q = wb and wqw = bw E Q, hence 

bwwb = b 2 E Q2. If b 2 is a noncentral  upper tr iangular matrix,  then b'2ab2a -1 

is also a noncentral  upper  tr iangular matrix for some a C SL,~(L). Thus  we will 

have a noncentral  upper  tr iangular matrix in Q4. If b 2 is a central matrix,  we 

can apply Proposi t ion D. | 

LEMMA 6: Let  Q be a conjugacy class of  a noncentral upper triangular matr i x  

in SLn(K) ,  where K = GF(2) or GF(3).  Then Q2 contains a transvection. 

Proof: Let K = GF(2).  Then  we can take u C Q in the form 

u = J ~ ,  �9 Jk~ o . . .  (~.lk,, 

where Jk, is the Jordan  block of the size kj. We may assume kl > 1. Then t = 

u- l t2n(1)u t2n(1)  is a transvection. Since every unipotent  element in SLn(GF(2))  

is real, we have t C Q2. 

Let K = GF(3).  Suppose Q is not semisimple. Then  we may take u E Q in 

the form u = J'k~ (3) ,lk2 �9 " "  (~ Jk~, where ,l;r = Jk~ or aJk~a -1,  where o" = 

d i a g ( - 1 ,  1 , . . . ,  1). Suppose kj > 3 for some j ,  then we may assume ka > 3. Pu t  

Ul = J'k,, u2 = .lk~+...+k~, m = k2 + ' "  + kz. There exists 5 E GLm(K)  such that  

5u25 -1 = u21. Let 61 = diag(a ,  1 , . . . , 1 )  C GLk, (K) ,  w h e r e a  = d e t 5  =-4-1. 

Pu t  ~ = 51 �9 5. We have 

(23) ")'?t7 -1  = 51Ul(~l  1 (~ ~?t2(~ - l  = (~lUl(~I 1 ~ U2 -1 E Q2. 

Further,  we have two possibilities, 

(24) X(~lT/dSllx -1 = Ul 1 for some x E SLkl(K),  

o r  

(25) x51UlS71x -1 =~ou~15~ 1 

where x C SLk, (K) ,  (f0 = d i a g ( - 1 ,  1 , . . . ,  1) C SLk, (K).  

In case (24) we have from (23) tha t  ( x ~  E m ) T u T - l ( x  -1 @Era) = u~ 1 Ou21  = 

u -1 C Q2. Hence t = t2k,(1)ut2kl(--1)u -1 C Q4. But one easily checks tha t  t is 

a transvection.  

Now let us have (25). Then(x  @ E m ) T u T - l ( x  -1 @ Era) = 5ou-~15o I @ u~ 1 = 

t12(1)(u11 @u~ 1) = t12(1)u -1 E Q 2  and we obtain t12(1) E Q2. 
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Let kj ___ 2 for every j .  We may assume kl -- 2. If 1 is odd, then the element 

u2 consists of an even number  of Jordan  blocks of size < 2. Hence u2 is real 

in SL,~(K) and therefore u' = ul @ u21 E Q. Thus we have a t ransvect ion 

uu' = u 2 @E,~ E Q2. If  I is even, we put  ul = J~, @ Jk2, u2 = Jk~ @ ' " |  m = 

k 3 + ' " + k z .  T h u s u 2  is real in SLm(K).  H e n c e u  ~ = u a @ u ~  -1 E Q. Now we 

only need to obtain a transvection in SLkl+k2(K) in the form u l z u l z  -1, where 

z E SLkl+k2(K). If  kl + k2 = 3, then u~ is a transvection. Let kl + k2 = 4, then 

Ul is real in SL4(K) and the element t24(1)uatz4(-1)u11 E Q2 is a transvection. 

I 

Now we re turn  to the proof of Proposition H: Let S be the set of all t ransvections 

in SL,~(K). Then  

(26) S U S  2 U . . .  U S '~+1 = SLy(K)  

([Eli). Since every transvection is a product  of two transvections (here n >_ 3), 

(26) implies 

(27) S n+l = SL,~(K). 

Our  s ta tement  follows from (27) and Lemmas 5 and 6. I 

6. P r o o f  o f  P r o p o s i t i o n  1 

Recall tha t  we consider here only classical groups G of rank >_ 3 other than  of 

type  A~. 

PROPOSITION I: Let g -= z 'u'  E C for some z ~ E Z(G) and u' E U,u' # 1. 

Then C 4 contains an element of  the form zglu, where z E Z(G),  gl E G1, 91 r 

Z(G1),  u E V. 

Proof: The  element u ~ can be presented in the form av, where a E G1, v E V 

(recall tha t  u ~ E U <_ /5 = G1V). If  a ~ 1, then obviously every power of C 

contains a desired element. Thus  we may assume a = 1 and g = z~v. 

Now we consider different cases. 

Br, r > 3. Here 

( 2 8 )  v = 

where x~ E U~,, x~,+~ E U~,+~j, 

(We use the nota t ion of [Bou].) 

IXx~iIIxci+~j, 
i = 1  i,j 

because V -- (U~,, U~,+~r < i , j  <_ r). 
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Note tha t  here G,  ~ SLy(K) .  Put  Vi = <U~,+r < i , j  < r), then V1 is 

Gl - inva r i am.  Moreover, if we consider the factor group V/Vt as Gl -modu le ,  

we obtain  the natura l  action of the group GI -~ SLy(K) on the r -dimensional  

vector space V/V, .  Thus,  conjugat ing v by appropr ia te  elements  in G1, we can 

get xc~ = x ~  . . . . .  x ~  = 1 in (28). I fx~.~r  # 1 in (28), then we may 

assume l = r (we can get this by conjugation by an appropr ia te  element ~b, 

where w (~ W((~2 . . . .  , ~ - 1 ) ) -  Put  Ul = I-I[=~ x~,+,~, u2 = I ] , j<~xc ,+ r  Then  

g -~- Z tY  == Z t X e l U l U 2  = ZtRlXel~L2 and w,~gw[,, 1 = Z l U l X t l l l 2 ,  where 1 # "/~1 = 
r - 1  l-lt=l x~_~ '  C G1 (here x'~,_~ = w~x~ ,+~w[J) .  Thus  we can get here an 

appropr ia te  element just  in C and thereh)re in every power of C. (Indeed, the 

image of such an element in Z ( G ) P / V  is not in the centre and therefore every 

power of its conjugacy class in Z ( G ) P / V  contains a noncentral  element.)  Let 

x~,+c~ -- 1 for a l l i ,  j .  Then  v = x~,. I f c h a r K  # 2, then x_~2x,,x-~2 = x'~ _~x~, 

for some x _ ~  6 U _ ~ ,  x _ ~  # 1, and x'c, _~ 6 U~,_~, x'~_~.~ r 1. Thus  again 

we have an appropr ia te  element in C and therefore in C 4. Let c h a r K  -- 2. 

x -~ ' x '  where ~ U~_~, ,  # 1, ' Then  xe~-~xe: r = xc,xr e,"-r xe2-~, x~2_e ~ xr 

U~, x'~= ~ 1, x'  x'  c,+~ ~ U,,+~:, ~,+~ ~ 1 ([St, L e m m a  33], [Carl ,  Theorem 

5.2]). Hence 

x~,x~2_c~x~,xc~l_e, = x 2 , , , , ~ x~ x ~ , ~  = z~ xc,+~ ~ Z ( G ) C .  

t t ~U-1 = Xt,  I Further,  w~,x, x~,+~ 2 ~, ~_~ x~: E Z (G)C  2 for x"  : -  we,ztc,+,~2o,]~., 1 
~2--(.I 

I. Thus we have an appropriate element in C 2 and therefore in C 4 (note that 

here we don't consider the central factor z' of g because it does not influence 

these calculations). 

Cr, r _> 3. Here 

(29) v -- f i  x2~, f l  xr162 
i = l  , ,j  

where x2t, E U2~,, x~,+cj E Ue,+ej. We may assume x2t, # 1 for some i or we can 

get an clement  v'  which is conjugate  to v, in the form v ' =  x~, +~  x~ 3 +~, �9 .. x~ ~ + ~ . ,  

e Z ( G ) C  (it follows from Proposi t ion E). In the last case the element  u,~, z'v'w[, 1 

will be an appropr ia te  e lement  in C. Suppose x2~, # 1; we may assume i --- 1, so 

x2~ # 1. Further,  

(30) [x2~, (a), xc~-~, (b)] = x2ck ( +ab2)x~,+r ( +ab) 

([St, L e m m a  33], [Carl ,  Theo rem 5.2]). By conjugat ing v by appropr ia te  elements  

in groups {U,k_, ,}  we can el iminate all factors of the form x,~+, k in (29) (this 
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follows from (30)). Thus  we can suppose 

(31) 

r 

'/) ~- 3 7 2 s  X2{t H 3~'r 4-s I �9 
i=2 i , j r  

l~ r the r ,  there exists a �9 {U+2~,) such that  

(32) (~X2e l ( y - I  ~- 11)2 et [12t l ?12el , 

where h2e, �9 H2~,, u2~, �9 U2,,. Note t h a t  ax2,,cr -1 = x?~. for every i # 1 and 

a - i  i f i , j  # 1. From ('H) and (32) we obtain 

(33) 
,,l = ave, -I = ax2 l H *2.. H *e .+ . .a -  

= w2~,h2~,u2~,ul �9 Z(G)C 

for some ul �9 V. Also, we have 

(34) v=, = (w.2~,h2~,)-~vl(w2qb.2q) = u2qulw2s �9 Z(G)C. 

Note tha t  

(35) (w2r h2q ) ~ = h2< ( -  1 ). 

Now from (33), (34), (35) we have 

(36) va = V2Vl = u 2 e , u l h 2 e ,  ( -1)u2~u~ = h~.,, ( -1 )u2  �9 Z(G)C 2 

for some u2 E V. From (36), v4 = xq-~2v3x[,l_s = h2q ( -1)x 'q_ ,=u3  E Z ( G ) C  2, 

where x, ,_,~ C Us 2 x q _ , ,  # 1, it 3 E V. If chark  # 2, then x'  # 

1. In this case, put  v5 = h2~,(-1)v4h2~l(-1) C Z(G)C 2. Now "6 = v5v4 = 
2 = ~,_,~u4 E Z(G)C 2 for some x" C U~,_~ 2, x" # 1, u4 E V. 

- -  ' s  - - s  ' s  - - s  

Thus  we get an appropria te  element in C 4. Suppose char K = 2. From (31) and 

(30) we obtain 0 = x(~_~,vx[21_~, = vx2~2xq+~, where x~a_~, # 1, x ~ + ~  # 1. 

Thus  v9 = x~,+~2x2~ 2 E Z(G)C 2. (Note tha t  in the case c h a r K  = 2, v2 = 1.) 

Then u,2q v~w~l x' = ~2_~,x2~ E Z(G)C 2 for some x'  �9 Us x'  # 1 
s --( I  ~2--~I 

and hence we obtain an appropriate  element in C 2. 

D~, r > 4. According to Proposit ion E we may assume 
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Also, we may assume x ~ + ,  2 r 1. Thus  w(2+~,~'vw~21+~, z 'r '  x' = " e L -  ~4 '~,~-~2 u E C 

(for some u C V) is an appropr ia te  element in C. 

2A2r_l,  r > 3. Here the root  sys tem is C~ and the proof  in this case is the same 

as tha t  for C~. The  only difference is tha t  here we use the c o m m u t a t o r  formula  

[x2~, (a), x ~  _~, (b)] = x2~, (+abb~ +~ (+ab) instead of (30) ([St, Section 11), 

[Car 1, 14.4, p. 265]). 

2A2~, r _> 3. Here R = B~ and therefore the element v can be wri t ten in the 

form (28). As in the case B~ we may assume 

(a7) v = x~, Vl, 

where vl �9 V1 = (U, ,+, , ,  x~,(0, b,)l l  _< i < j _< r, b, �9 K) .  If among  the factors 

of vl there is x,k+~ ~ r 1 for some k, l, then 

(38) Vl = x ~  ~,x~, (0, bk)x~, (0, bl)v2, 

where v2 �9 V1, and among  the factors of ve there is no element from the root  

subgroups  U~,  U~,, U~+~. Let s �9 K*, ss ~ = - 1 ,  s ( s ~  -1 r - 1 .  One can 

easily check 

h~k_~,(s)x~+,l(a)h~_~l(s - I )  = x~+~, ( s ( s~  

(39) h~-~,(s)x~k(O, bk)h~k-~(s -1) = x~k(O, ssObk) = x , k ( 0 , - b k ) ,  

h~  -,l  (s)x~, (0, bl )h~ k -~  (s - I  ) = x~ l (0, (ss ~  -lbt)  = :r,~, (0, -bt) .  

Now from (37), (38), (39) we get v'  = vh~k_~[s)vh~_~,(s  - 1 ) "  = x '~x '~+~/ .  2 �9 

Z (G)C  2, where x~+~ l '  r 1,v 2' C 1/1 and among  factors of v~ there is no ele- 

ment  from the root  subgroups  Ur U~, U ~ + ~ .  We may  assume l r 1. Then  

wqv" 'w~" -~ = x'~ x'.~_~ v' 2 �9 Z (G)C  2, x '~_~  ~ 1. 'Fhus we can find an appropr ia t e  

e lement  in C 2 and therefore in C 4. Let 

r 

(40) v = x~, 1-I :r~, (0, bd. 

Here x~ = x~  (al ,  b~). Further ,  h;t 6 bc the image of the mat r ix  

d i a g ( s , . . . , s ,  s - ~ ( s ~  r, ( s ~  ( s~  -1) �9 SU2~+I(K),  

s E K*, ss ~ = - 1 .  One carl check 

(41) 

5x~, (al, bl)5 -1 = x ~ ( s r + ' ( s ~  -b l ) ,  

5x~,(0, b,)5 - I  = x~, (0, - b , ) .  
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If char K r 2, then 

(42) s~+l(s~ -" r -1  

(indeed, s~+l(s e )  -~ = - 1  implies ( s e r f+ % -~ = - 1  e = - 1  and therefore ss e = 

1 which contradicts  our choice of ,) .  Thus, if al :~ 0 and c h a r K  ~ 2, then (41), 

(42) imply 

v' = vava -1 = x q ( a ; ,  b;) E Z ( G ) C  2, 

where a' 1 r O. Hence 

x_~v'xT_~ = v%,_~ �9 Z(G)C 

for some x-ca E l]_~a, xq_ ,2  e Uq_,a ,  a'q_,= r 1. Thus  we have an appropr ia te  

element in C ~ and hence in C 4. If a~ r 0 and char K = 2, then 

v 2 = x~,(O,a~a O) e Z ( G ) C  ~. (43) 

Further,  

(44) [z~, (a, b), x~ 2_~, (c)] = xq  +~ (=t=cb~ (=kac, +cc~ O) 

([Carl ,  p. 265]). From (43) and (44) we obtain 

v' = v2x~_~, v2x[l_~l = z~2z~,~2 e Z ( G ) C  4, 

wherex~2_ q E ll~2_q, x~ 2 �9 U~2, x~+~ 2 �9 U,,+r x ~ + ~  ~ 1. Now w~lv'tb~ l = 

X~X'(:_~, E Z ( G ) C  4. Thus we have an appropriate  element in C 4. If al = 0 we 

may assume bl / 0. Then by (44) the element x~_~ ,v  x~-]l_q has the factor 

x~,+, 2 ~ 1 and we obtain the case considered above. 

2D~+x, r > 3. Here R = /3~ and the re fo rev  has the form (28). I fx~,  = 1 

for every i, then we can apply Proposit ion E to obtain an appropr ia te  element 

in C. If x~, r l for some i, we may assume i = 1. Further, i f c h a r K  = 2, 
-- 'l) P I r then Vl = x~2-,,vx~21_q = x~x~,+~ 2 I-Ik=ax~2+~k, where x '  q+~2 r 1. Hence 

v~ = vvl �9 ,~"q+~2 l']k=3x~a-ck E Z ( G ) C  2 (note that  v 2 1 if c h a r K  = 

2). Then  w~,v2w~ 1 is an appropriate  element. Let c h a r K  r 2. Pu t  h = 

h ~ _ a _ , ~ ( - 1 ) h , . _ ~ _ ~ _ ~ ( 1 ) . . . h ~ _ q ( ( - 1 ) ~ - l ) .  One can verify tha t  h x ~ h  -1 = 

x-~ for every i > 2. We have 

' I I  (45) va = vhvh  -1 = z q  x'~,+e, E Z ( G ) C  2. 

We may assume v3 r 1. Indeed, if v3 = 1, we consider the element v4 = 

x~vx[21hvh - I  instead of v3. The element v4 has also the form (45). Now our 

proof  can be completed in the same way as for B~. | 
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PROPOSITION J:  Assume G is not of type 2A2r. Then the set C "2 contains an 

element of  the form h~r(+l)glv ,  gl E G1, v E V. 

Proo~ Here R = Br, Cr, or Dr; W(G)  -~ AW(G1);  W(G1) ~- St,  A ~_ W(G) ,  

and A is an abelian group of exponent 2. h l r ther ,  as the set of representatives 

of double cosets W(G)  = U, w(c,)co, w(c,) w e  can take the set {cok}, where 

c o 0 = l a n d f o r k _ > l :  

(46) 

{ w~w~,+~. . .w~r  if R = B r ,  
COk = 1/)2~W2,,~+1 "'" W2,~ if R -- Cr, 

~l}Ek__~k+l~]~k+6k+lW~k+2__~k+3W~k+~+~k+3"''~r_l--C,.~}~r_l+~ r if R = Or. 

(Note tha t  in the cases Br and Cr the number k can be arbitrary, while in 

the case D~ the number  of integers in the interval [k,r] must  be even.) Hence 

G = LJz P&~P [Car2, Proposit ion 2.8.1]). Since C ~ P,  one can find an element 

x C C of the form x = ~bip, i ~ 0. The e l e m e n t p  can be written in turn as 

p = h~,(s)g'lu for some g~ E G1, u C V. Thus 

(47) x = dJiha~(s)g'lU, i 7 ~ O. 

By (46) we can express dJi in the form 

(48) w~ = ~b~, zb~2 . . .  z/,~, tb~ 

for some roots/~1, . . . , /38 (note that  the last root in the expression (46) coincides 

with c~). The  elements wz, commute  with each other and with w ~ .  Moreover, 

zb~, = h~ , ( -1 )  and ( w ~ h ~ ( s ) )  2 = h~,~(-1). Thus 

(49) (&,ho~(s)) 2 = ha, ( - 1 ) h ~ ( - 1 ) . . .  h~., ( -1 )h~ ,  ( -1 ) .  

Further, every element in the group H can be written in the form ho~(t)hl for 

some t E K* and some hi E H N G1. Therefore, (49) yields 

(50) (tbiha~(s)) 2 = ha, ( + l ) h l  

for some hi e HnG1.  From (47) and (50) we obtain (&ih~(s))- lx(&zho~(s))  x = 

g~uha~(+l)hlg~u = ha~(+l)glv  E C 2, where gl C G1, v E V. 1 

PROPOSITION K: Let G be a group of type 2A2~. Then C a contains an element 

of the form g~v, g~ ~ G~, v ~ V. 

Proof." In the same way as in the proof of Proposit ion J we can take an element 

x ~ C in the form w~w~+~ . . . @ ~ h ~ g ~ u ,  where ho~ = h ~ ( s )  for some s 
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K*, g~ E G1, u E V. Note tha t  the elements ~b~ commute  with each other and 

with ~be,`h~. Hence 

(51) X = "We,`ha,(gek " " We,`_, g'l u = (ve,. hc~,.~dg~ u, 

where & -- ~bek �9 "@e,--1. Further,  there exists an element xe~ E U~ such tha t  

(52) x e ~ ( v ~ h ~  = x l x 2 ,  

where xl  �9 U . . . .  x2 �9 Ue~ ([EGIII]).  From (51), (52) we have 

Yl = X e , . X X - ~ r  1 ~ "  XlX2d)g~ux~ 1 
(23) 

= Xl&J2gllUX-~ 1 = �9 , �9 , , XlWglU 1 = aJXlgl~tl, 

where 

' = d3-1X1 & C U-e,., ' = & - i x 2 &  C Ue~, xl (54) x 2 

i-1 t / -1 and Ul -- (gl x2gl)uxe , `  �9 V. 

Since Xl �9 U . . . .  it can be expressed in the form xl = x_e~(a ,b )  for some 

a, b �9 K.  Further,  

(55) & - l x _ e , ` ( a ,  b)& = x - e , ` (+a ,  b). 

(This equali ty can be checked easily for the corresponding matrices in SU2r+I (K);  

therefore it holds for G "~ S U 2 r + I ( K ) / Z ,  Z <_ Z(SU2~+I(K).)  Also, 

(56) he,` ( -1)x_e~ (a, b)he~ ( - 1 )  = xe,` ( - a ,  b) 

([St, Section 11]). By (55), (56) we have an element h = he~(+l)  such tha t  

(57) h x l h - l x ~  = x-e,` (0, 51) 

for some bl �9 K. Pu t  5: = h x l h - l x ~ ,  g2 = hg~l h - l ,  u~ = h u l h  -1 ,  Y2 -- 

g 2 u 2 h x l h  - l &  (note, h~zh -1 = & because h -- h~,`(+l)  and among the factors 

of d~ ~here is no ~be~). Obviously Y2 �9 C. Pu t  y3 = y2y l .  By (53) and (54), 

Ya = g2u25:g~ul E C 2 (note ~b 2 = 1). Pu t  Y4 = 5:g~ulg2u2 = 5:g3u3, where 

g3 = g~g2, u3 = g21u lg2u2  �9 V. Obviously Y4 �9 C 2. Further,  let s �9 K* 

such tha t  s$ = - 1 .  Then from (57), h ~ ( s ) 2 h ~ ( s  -1 )  = x_e , ` (O,s$bl)  = 5:-1. 

P u t  Y5 = h ~ ( s ) y 4 h ~ , ` ( s  -1 )  = 5:- lg4u4,  where g4 = h ~ ( s ) g 3 h ~ ( s - 1 ) ,  u4 = 

h ~ ( s ) u 3 h ~ , ` ( s - 1 ) ,  and put  Y6 = g4u4x -1 .  Then Y6 �9 C 2 and Y6Y4 = g4u493u3 = 

g l v  �9 C 4, where gl = g493 �9 G1, v = g31u493U3 �9 V .  | 
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PROPOSITION ],: I f  X = h~,~(• E C for some g'l E Gt ,  v' E V, and if 

h~,r(-t-t).q' 1 ~ Z(G)  (in the case 2A2r we suppose x = g'l v' and g'l ~ Z(G)) ,  then  

the set C 4 contains an element x -- glv,  where 91 E G1, 91 ~ Z(Ga),  v E V. 

Proof'. P u t  F = ( h ~ , ( + l ) ,  GL), 7 = h c , , ( + l ) g ~ .  If  7 ~t Z ( F ) ,  t hen  .q = 

3 ' a T e - 1  q~ Z ( F )  for s o m e  a E Ga.  B u t  9 E G1, and  we have 

3"xT- laxa  -1 = 7 ( T v ' 7 - 1 ) ( ~ T c 1 - 1 ) ( a v ' a  -1 )  = 7 2 v ' 7 - 2 ( 3 ' a T a  - t ) ( a v ' ~  -1 )  

= 72v,3"-2gav, a -1  = 9v, where  v = g- I  (7~v,7-2g)a+/a-I  C V. 

T h u s  we have  an  a p p r o p r i a t e  e l emen t  j u s t  in C 2 a n d  the re fo re  will have  it in C 4. 

Le t  3 E Z ( I ' ) .  W e  cons ide r  the  d i f ferent  types .  

Br, r>_3.  

T h e  inc lus ion  7 E Z ( F )  impl ies  here  

3' = h~t_+2(,s)h~ 2 _~3(s2) ' ' '  h,~_,_~(s~- l )h+,( t )  

for s o m e  s, t E K* ,  .s ~ = t 2. ] t  is ea sy  to  verify t h a t  

7z~, (a)7  -1 = x+, (sa), 
(.~8) 

7z+,+, ,  (a )7  - !  = z+,+~, (+2a) 

for eve ry  i, j .  S ince  3' ~ Z ( G ) ,  we have s r 1. S u p p o s e  s = - 1  (here  cha r  K r 2). 

Us ing  P r o p o s i t i o n  A for V0 = V, tq = IV, V], we can  get  an  e l emen t  x l  t h a t  is 

c o n j u g a t e  to  x and  has  the  fo rm xa = 3'u, u E IV, V] = (U~,+~] I  < i r j _< r ) .  

S u p p o s e  u r 1. T h e n  x~ = 72u ~ = u 2 r l (no te  t h a t  ,.~2 = 1 b e c a u s e  ,s = - 1  

and  72 C G I ,  and  u 2 -r 1 b e c a u s e  c h a r K  r 2). T h u s  we have an e l e m e n t  u 2 r 1 

in C z A (U~,+~ [1 _< i r j <_ r ) .  A p p l y i n g  P r o p o s i t i o n  E we can  ge t  an  e l e m e n t  

fi C C 2 in t he  fo rm ~ = x~,+~x+3++ 4 . . . .  T h u s  ?J)~l ~'/J)~ 1 is an a p p r o p r i a t e  e l e m e n t  

in C 2. Hence  we can  ge t  such an  e l emen t  in C 4, too.  Now let  u = 1. T h e n  

3'X(l~,~./03'~,J:)olx~-I l = 7.TeI"v--lX~ 1 = X'q E C z for some  x~ ,  x'e, E l}+t, x~:, x'+~ 

I. S ince  c h a r K C 2 ,  w e h a v e  , . - 1  ' a n d  # 1 T h u s  we X--~'iXc~LX--~ 2 : :  X I ~ I - - + 2 X (  I X([L--~2 " 

o b t a i n  ou r  e l e m e n t  in C 2. Let  s r +1 .  We m a y  a s s u m e  x = 7 ( th i s  follows f rom 

(58) a n d  P r o p o s i t i o n  B). l~ l r the r ,  ' � 9  -1 = x '  C 2 wo3"Wo xe~++2"Yxe, + +:+ +,++:2 C for s o m e  

x ' x '  , �9 - I  is an  a p p r o p r i a t e  q+~2,x+t+~2 C U~++ 2, x~++~,  ,~+~ r 1. Now ~b~x~++~w+~ 

e l e m e n t  in C 2. 

Cr. 

T h e  inc lus ion  "y ~ Z ( F )  impl ies  here  "~ = h ~ ( s ) h : ~ ( s ) . . . h 2 ~ ( s )  for some  

s ~ K ~ S ince  7 ~ Z(G) ,  we have  s ~ =~ 1. l~ i r the r ,  7x2+,(a)3'  -~ = x2+,(s2a) and  

(59) 7x~,,-~, ( a )7  -~ = z+,+~, (s~a). 
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Using Proposi t ion A we may assume z = 3'. Thus 

is an appropr ia te  element in C 2 (for some x ~ + ~  E U~1+~ 2, a :~+~ r 1). 

Dr.  

The  inclusion 3' E Z(F) implies here 

3" =h~l-,2(s)h,2-,3(s2) "'" 

. . .  h~,_~_~_,(s~-2)h~_,_~, (s(~-2)/2)h~_,+~(s(~-2)/2+1) 

(if r is odd, then s should be a square in K*). The  formula (59) also holds here 

and using Proposi t ion A we also may assume x = 3'. If r = 2k, then ~bo3'tbo 1 = 
. . . .  1 X 5 - 1  ,~)-1 C 2 3'-1 and therefore w~2+~3(wo3"w o ) ~,+~23" c2+~3 ~.~+~3 E is an appropr ia te  

element. Let r = 2k + 1. Then w(e~) = - e ,  for some w E W(G)  and for every 

i > 1. T h u s  6 = (03"(0-~3" = h~_~2(s)h~,+~(s ) c C 2. Further, there exists 

wl E W ( G )  such t h a t  1/)lh~JJ11 = ~ - l .  Thus we have lblh~bllxel_e25x~l_e2 = 

x'~, _~  �9 C 4 for some x~,_~2, x'~,-~2 �9 U~ _~ ,  x~,_~,  x',,_~2 -r 1. 

2 A 2 r -  1. 

The inclusion 3' �9 Z(F) implies here 3'x2~,(a)3' -1 = x2~,(sa), 3" x~,+~(a)3" -1 = 

x~,+~j(sa) for some s �9 k and s r 1 because "7 r Z(G).  Thus again we may 

assume x = 3' (Proposi t ion A). The preimage 3' in the group SU2~(K) can be 

represented by the matrix ~ = d i a g ( t , . . . , t , ( t ~  ( t ~  where tt ~ = 3. 

One can see tha t  ~,r 1 �9 Z(SU2~(K)). Hence 

(60) 3"&o3"(Oo I �9 Z(G).  

Let xl = 3"zr162162 = 3'2x'r162 2. Then xl �9 C 2. If 3'~ �9 Z(G),  then 
�9 - -  2 - C 2  - �9 U ~ l _ ~ 2  w~2XlW~.~ 1 : 3" X e t _ ~  2 �9 is an appropriate  element for some x~_~:  

x"  :~ 1, because 3 '2 = ( h ~ ( •  2 �9 G1. If 3 '2 ~ Z(G),  then using (60) ~1 --~2 
we obtain  x2 = ~bo3'2&o13'2x~,~+, 2 = 6x',,+,~ �9 C 4, where ~ = ~303'2&013' 2 �9 

Z(G)  ~ G~. Thus ~b,~x2~b~ ~ is an appropriate  element in C a. 

2A2r .  

Let "~ be the preimage of 3' in SU2~+x(K). Then "~ = d iag ( t , . . .  , t , t - ~ ( t ~  ~, 

( t ~  ( t~  Using the form "~ one can easily see 

7x~, (a, b)3' -x = x~, (U +~ (t ~  t t~ 
(61) 

3"x~,+~, (a)3' -~ = x~,+~, ( t t~  a) 

for every i, j .  If U+~(t~  -~ = 1, then t ~+~ = ( t~  ~ and therefore (U+~) ~ = U. 

Thus  t ~ = t -~ and hence tt ~ = 1. In this case (61) and the condition 7 �9 Z(F)  
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imply 7 E Z ( G ) ,  which contradicts  the assumpt ion  of the proposi t ion.  Thus  

t~+ l ( t~  - r  ~ 1. We may  assume v ' E  (x~(0,  bi), U~+~j I 1 _< i , j  ~ r)  (see Propo-  

sition A). Moreover,  v' = 1 if t t  ~ r 1 (see Proposi t ion B) or t t  e = 1 and 7v '  = 

v'~,. Suppose t t  ~ ~ 1. Then  x 7. We have x . . . .  +~rTx~-~l + ~  x '  
~ ~f 6r_i.~_~7" 

for some X~r_~+e , X' , ~ _ , + ~  ~ 1. Pu t  5 = &07d~o17. Using the form ~ one can 

see tha t  ~b~ 5~b~- 1 = 5. Thus  wr(&07~bol)(7x'~_~+~)&~ -1 = wrhx~_ ,+~w~"  ' � 9  = 

5x"  E C 2 is an appropr ia te  element because 5 E G1 (recall 7 E G1 in the 
6r--I ~r 

case 2A2~). Suppose t t  ~ = 1 and x = 7v '  = v '7.  If v'  ~ 1, then we m a y  assume 

(62) V I - -  Z~l+62X61 (O, bl)Xe2(O, b2)v~, 

where z~+~ 2 E Ur 2, x~,+~ 2 r 1, v~ E (U~,+~j, x~(0,  bi) i , j  ~ 1,2). Indeed,  if 

among  the factors of v'  there is x~k+~ ~ r 1, then conjugat ing x by an appropr ia te  

(v, w E W ( G 1 ) ,  we obta in  k = 1, l = 2. If all factors of v'  have the form x~(0,  bi) 

and x~k(0, bk) ~d 1 for some k, then conjugat ing x by an element in the group 

U~_~ k we can obta in  a nontr ivial  factor x~k+~ ~ (see (44)). Thus  we suppose (62). 

From (35) we obta in  for some h E H 

t V]! (63) v ' h v ' h  -1 = x ~ + ~  1, 

where x '  " there are no elements from the ~+~2 ~ 1 and among  the factors of v 1 

groups U~,  U~:, Ur 2. Since x = 7v '  = v '7,  using (62), (63) we obta in  

- 2Xt V p~ 62" (64) x~ : x h x h  -~ : 7 v ' h v ' h - 1 7  : ~/ ~ + ~  1 �9 

Further ,  for some h~ �9 H 

(65) h ~ v ' h l  ~ = v ' -~  

(it follows f rom (61)). From (65) 

(66) x2 = X h l X h l  I = 72 �9 C 2. 

Let 5 = &072~bo~72. Since "7 �9 G1, we have 5 �9 G1. From (64), (66) 

r~ 6 4" (67) x~ = 5~oX2~o~xl = 5 x ~ + ~  v~ �9 

Further ,  ~b~5~b/~ 1 = (f (this follows as above from the form ~). From (67) we have 

x4 = W~lX3~b~-~ ~ �9 C 4 as an appropr ia te  element. Let  v '  = 1. Then  x = 7. From 

(61) 
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for some x~,, z'~, # 1. li: tkc same way 

(60) x'e', 7 E C, 

where x'~L x'e' ' = x( L (0, bl), bl ~- 0. From (68), (69) 

(70) y = ?x'~, x:' 7 = 72x~, (0, bl) C C 2 

(recall tha t  "~ commutes  with xr (0, b,)). Fronl (44) and (70) 

(71) Yl -~ ze~ -eL Yxe~i-el = ")'2"Te, (0, b I )2:e: (0, b2)xet +e~ E C 2, 

where x~+~: 7 ~ 1. Further, cbo"Yo)0 -1 E C. Using tile same arguments  as above we 

obtain 

(72) Y2 = cboT"&olX~ ( 0 , - b l )  E C 2. 

From (71), (72) 

Y3 = Y'~Yl = &oT"dJ~-172x~2(0, b2)xeL +e~ E C 4. 

Now ~br y3w~l 1 is an appropriate  element from C 4. 

2 D r +  1 . 

Since 7 = h~, (~ 1)9z E Z(F),  we have g2 E H1 = G1 71H. Then 

7 = h , ,_ ,~ ( .~ ) . . ,  h~, _,_,~(s~_l)h~, (+1), 

where s, C k*. All parameters  s i , . . .  , a~- i ,  +1 in the expression for ? be!ong to 

k, so &07d;~71 = "7 -1. Now the proof proceeds as in the case B,.. II 

Now we can prove Proposition 1: According to Proposit ions J and K one can 

find an element x = .qlv in C 4. If 7 = 91 r Z (G) ,  using Proposit ion L, we can 

find an element x'  = z'g'lv, .q'l r Z (G) ,  in C 16. I f 'y  = 91 E Z (G)  and v r 1, then 

we can apply Proposi t ion I and again obtain an appropriate  element in C 16. Let 

x C Z ( G )  (1 C 4. By Proposit ion D we have an element z '  = zu, z E Z(G) ,  u E 

U,u  r 1, in C a if R ~: C~; or x '  = zh,~(-1)xa(.s)  E C S , x  ' q~ Z(G) ,  for some long 

root  a, z C Z(G) ,  if R = C~. Now if R r C~, then we apply Proposi t ion I and 

we obtain an appropria te  element in C 32. Let R = C~, then by conjugation by 

an appropr ia te  element ~b we can get ~ = a~. Purther, in the case C~ we have 

]Z(G)] = 1 or 2 and z C G1 or z h ~ ( - a )  E G1. Thus we can apply Proposit ion 

L and obtain an appropriate  element m C 32. Note tha t  if we find an element 

of the form zglv ,  9t ~ Z(G1), z E Z(G) ,  in C m for some m, then we can find 

an element of such form in any power of C m. Thus  in all cases we can find an 

element x = z�lv, 91 ~ Z(G),  in C a2 for every noncentral  conjugacy class C. 
| 
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7. P r o o f  o f  P r o p o s i t i o n  2 

We shall use here Proposition C. We put F =/5 ,  V = V, F = G1, and Q is the 

conjugacy class of the element glv (from Proposition 2) in/5. Further we put 

2. r a n k G  i f l g l  > 4 (or Ikl >_ 4 if G is of type 2D~+l), 
= 1 6 ( r a n k G + l )  i f l K t  < 4 ( o r l k l < 4  if G is of type 2D,+l).  

The group G1 here is isomorphic to a factor group of SLy(K) (or SLy(k) if G is 

of type 2D~+~), (r = rankG). From (21) (see Section 5.2) and Proposition H we 

get 

(73) Qg ----- a l ,  

where Q is the image of Q in G1 = / 5 / V .  

Now we define a subgroup D1 _< G1 in the following way. If char K = p ~ 0, 

then we put D1 = (x~ (t)la �9 ( ~ l , . . . , a r - 1 }  , t  �9 GF(p)). Thus in this case 

the group D1 is a factor group of SLr(GF(p)). If char K = 0, then according to 

Proposition F we can find a, b �9 G1 such that the group (a, b) is dense in G1. 

Put D1 = Ca, b). Since every Chevalley group is generated by two elements, the 

group D1 in the first case is also generated by two elements which we also will 

denote by a and b. 

Both generators a and b of the group D1 are noncentral elements. Using (18) 
~t12. 

and Proposition H we obtain a, b �9 This inclusion implies that D1 _< 

(g l , . . .  ,g,}, where g l , . . .  ,g, are some elements in C. Put  D = (g l , . . .  ,ge). 

Now we will check the condition (b) of Proposition C. Obviously, we can check 

the condition (b) for the subgroup D1 of D instead of for D. Moreover, in the 

case of char K = 0 we can check the condition (b) for any dense subgroup of 

G1 (note that  the action of G1 on V//V/+I is algebraic). Hence in the case char 

g = 0 we can check the condition (b) for (x~(t)l ~ �9 (a l , . . . ,c~r-1) ,  t �9 Q) 

(here Q is the field of rational numbers), i.e. for a factor group of SLr(Q). 

Br, r > 3 .  

Here V = (Uq, Uq+~j I1 _< i , j  <__ r), 170 = V, 111 = (U~,+~,I1 < i , j  <_ r). 
We have G1 ~ SLy(K) and 1/o/171 is an r-dimensional K[G1]-module, where the 

group G1 -~ SLy(K) acts in the natural way. Hence I(SL~(K'))Vo/V1 = Vo/V1 
for every subfield K '  C K.  Further, 

(r4) (1), (a)] : ( •  

Hence every element of the K[G1]-module V1 can be presented (in additive form) 

as a sum of elements (xr (1) - 1)xr ~ (a). This implies the condition (b). 
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Cr. 
Here V0 = V = (U2r U~,+~,I1 <_ i , j  .<_ r>, V1 = 1. We also have (74) and 

(75) [x,,_~,(1), x2~,(a)] = x2(,(+a)x,,+~,(+a) 

([St, Lemma 33], [Carl, Section 5.2]). These formulas show that  every element 

in the K[Gl]-module  V is a sum of elements of the form (x~ _ej (1) - 1)v, where 

v E V. This gives tile condition (b). 

Dr. 

Itere V0 = V = <U~,+~I 1 < i < j <_ r), Vl = 1. Tile proof is tile same as 

above. 

2A2,._1, r > 3. 

Here V0 = V = (U2~,, Ur162 < i < j < r), V1 = 1. We also have (74), (75) 

([St, Scction 11], [Carl, p. 265]), and can check the condition (b) as in the case 

Cr. 
2A2r , r >_ 3. 
Here Vo = V = <U,,,U~,+~I1 < i , j  < r>, 

V l ~- <X(, (0, b), U+,+,, I 1 _< i, j <_ r, b E K, b + b ~ = ()), 

V2 = <U~.+~: I1 _< i, j <_ r). We have 

(76) [x, _~j(1), x~:(a,b)] = xe,(+a, +b~ ~ 

([Carl, p. 265]), and also (74). Using (74) and (76), we again obtain the condition 
(b). 

2Dr+l.  

Here V0 = V = (U(,, U~,+~ II <_ i , j  < r}, V1 = (U~,+~, I1 <_ i , j  <_ r). We 
have 

(77) [x~,_~(1), x,,(u)] = x~,(-t-u)x,,+~j(:t:uft) 

([St, Section 11], [Carl, p. 265]), and also (74). Using (74) and (77) we obtain 
the condition (b). 

Now we have checked the condition (b) and have the condition (a) from (73). 

Thus 

/5 = Qae (78) 

and 

(79) 

where 3e = 6r if I K I 

z, P c C ae, 

>_ 4 ( or I kl > 4 in tile case 2D~+l ) or 3e = 48(r + 1). 
Note, instead of (78), (79) we can write /5 = Qa~+m z,/5 c C ae+m for every 
positive inte~cer m. Thus we have z,/5 C C 64r. II 
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8. P r o o f  o f  M 2  

We prove here that  for every positive integer" r there exists a positive integer 

do = do(r) such that  

(80) cn(a) < do 

for every proper quasisimple Chevalley group G of rank _< r and for every finite 

twisted quasisimple Chevalley group of rank <__ r. 

First we consider the cases where G is of type A1, B2 (char K ~ 2), or C~. 

For the case A1 the inequality (80) follows from Proposition G. The case C~ was 

considered before, in M1. For B2 (char K ~ 2) we prove 

PROPOSITION M: Let G be a group of type B2, char K 7~ 2, IKI > 5. Then 

on(a) _< 448. 

Proof of  Proposition M: 

LEMMA 7: Let g = zu C G, z C Z(G),  u E U, u r 1, and let C be the conjugacy 

class ofg.  Then C 112 = G. 

Proo~ Put  G1 = (U• V = (Uq, U,2, U,~+~}, /5 = G1V. We have 

u = av, where a E U,,_,~, v E V. We may assume a r 1. Indeed, let a = 1. We 

may assume v = x , ,x~l+~,  where x~+,~ r 1 (this is easy to get by conjugation). 

Then w~2vw~ 1 is an appropriate element. Let Q be a conjugacy class of u in 

/5 and Q its image in G1. We have U s = G1 (see (19)). The factor V/U,,+,  2 

satisfies the condition (b) of Propositon C with respect to the group D introduced 

in the preceding section. (Indeed, V/U,I+,~ is a standard SL2-module.) Using 

also (18) we get (as above) from Proposition C that  (~24 = / 5 / U ~ + ~ ;  moreover, 

V/U~I-~-~2 C (~16, where Q is the image of Q in V/U~+~ 2. Since char K r 2, 

every element of the group U~+~ 2 is a commutator  [Ul, u2] for some Ul, u2 E V. 

Hence every element of U~I+~ 2 is contained in Qa2. T h u s / 5  = Q24+32 = Q56. 

Since the order of the element z is 1 or 2, we have/5  C C 56. Thus U C C 56 and 

according to Theorem H: G -- C 11~. I 

LEMMA 8: Let C be a noncentral conjugacy class such that C 2 contains an 

element from the center of G, then C 224 : G. 

Proo~ We proceed as in Proposition D. Namely, if g E C, then 9-1z  C C 

for some z c Z(G).  For some element t in the long root subgroup UZ we have 

that  t g t - l g  -1 is either a nontrivial unipotent element or a noncentral element 

in (U+a) where a is a long root. In the first case we apply Lemma 7. In the 

second case we may assume that  c~ = q - e2. Thus we have an element x E C 2 
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of the  form x = z91, where g~ C: G~, g~ q~ Z(G~). Then we can repea t  the  

cons idera t ions  of t i le proof  of Lemma 7. | 

Now we can prove Propos i t ion  M. 

Let  C be a noncentra l  conjugacy class of G. Then  we can find an e lement  

x �9 C 2 of the  form x = h , 2 ( •  gl �9 G1, v �9 V (see the  proof  of P ropos i t ion  

J). If x �9 Z(G) or h~(-t-1)gl  �9 Z(G), then C 224 ~- G according to  Lemmas  7 

and 8. Let  h~2( •  ~ Z(G). If h~2(+l )g  1 ~ Z (F )  for F = (h ,2(~: l ) ,  G1}, then 

C 4 conta ins  an e lement  of the  form g'lv', where g'l C GI, g'l ~- Z(G1),v' E V (see 

proof  of P ropos i t ion  L). Again  a.s in the proof  of L e m m a  7 we get  C 4'112 = G. 

Now let h = h~2(+1)g1 �9 Z(F) .  Then  91 = h ~ , _ , : ( - 1 ) .  Using Propos i t ion  A we 

can ob ta in  v = x,~+, 2 . Then  x 2 = h2v 2 = v 2. I f v  r l ,  then v 2 r 1, so we 

have a nontr iv ia l  un ipo ten t  e lement  in C 4. Thus  C 4112 = C. If v = 1, then C 4 

conta ins  1 and,  app ly ing  L e m m a  8, we obta in  C 4"112 - -  G. m 

Now we will prove (80) for all remaining  cases. We need the tbllowing lemmas.  

LEM MA 9: Assume  G is not of type A1, C,., B2 with char  K r 2, or 2G2. Further, 

let fl E R and let { % }  be the central .series d U  o ( i.e. U~ :- [U;~-', Uo]). Let 
m3 �9 U~, x~ • V/, ~-' . Then hxah 1 ~ X~I mod U~ +I for some h �9 H .  

Proof" Let G be a proper  Cheval ley group. Then  r a n k G  > 2. For a group 

of type  B2, char  K = 2, we cart take h = 1. Thus  we may assume tha t  G 

is not  of t ype  B2. Then  for every root  /~ there  exists  a long root  a such tha t  

ho,(-1)z~(a)h~(-1)  = z ~ ( - a )  (if char  K = 2, then - 1  = 1 and h = 1). 

Let  G be  a twis ted  group. Consider  groups of rank 1. If G is of t ype  2A2, then 

U~= (x O(a,b)[a,b�9 K, b+b e +aa ~  H e r e U ~ =  (x~(0, b ) [ b � 9  K, b+b ~  
0), b~  = 1, and  hz( -1)x~(a ,b)hz ( -1)  = xz( -a ,b) ,  h~(s)xo(O,b)h~(s -1) = 
x z ( 0 , - b )  for s �9 K such tha t  ss ~ = - I  ([St, Section l l  D . 

Let  G be a group of type  2B.~. Then  char  K = 2, U~ " (x~(a,b)[a, b �9 

K), U~ = (xe(O,h)lb �9 K}, U/~ = 1, and x~(a,b) = x~(O,b'), z~(0 ,b)  = xt~(0,0). 

Thus  we can take  h = 1 here. 

Cons ider  groups  of rank 2, i.e. ~A3, 2A4, aD4, 2F4. The  last  is a group over a 

field of charac te r i s t i c  2. Hence we can take h = 1. Let G be of t ype  2Aa, let a l  be 

a shor t  root  and a2 a long root.  Then  h~(s)x~2(a)ho,(s -1) = xa2((ss~ 

We can find s �9 K* such t ha t  ss ~ = - 1 .  P u t  here h = h~,,(s), lq~rther, 

h ~ , ( - 1 ) x ~ , , ( a ) h ~ ( - l )  = x ~ , ( - a ) .  Let G be of type  2A4. For shor t  roots  we 

can use the  same cons idera t ions  ,as for 2A2, and  if /~ = a l  is a long root ,  then 

h~2( -1 )x~  (a)h~,(-1 ) = xm ( - a  ). 
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The case 3D4 as well as the cases of rank _> 3, all have the same proof as the 

proof for untwisted groups. I 

LEMMA 10: Let G be a finite group of rank >_ 2, but not of the type 2A2r , Cr, B2, 

(char g r 2), or 2F4. Suppose I K[ > (niR+[ + 1) 3. Then there exists an element 

h E H such that h n is a regular element. 

Proof." The root subgroups for the groups considered are only one-parameter 

groups, i.e. Ua = (x~(a)), where a E K or k. For every root a E R we have a 

homomorphism c~ : H ~ K*, defined by the formula hx~(a)h -1 -- x~(a(h)a).  

It is easy to see that  for the groups considered, im a D k* (if the group is not 

twisted, we put  k -- K)  for every a E R +. Let Hn = (h'~ih E H) .  Then 

a(H,~) D k *'~ for every a (here k *~ is the set of the nth powers of all elements in 

k*). Put  M -- U , e a +  ( k e r a  M Ha), then 

[Ha  [[R+ [ 
IMI < Ik*n I 

Therefore, if [k*n[ > JR+I, then we have an element h' E H,~, h' ~ M. Obviously 

it is a regular element. Since k* is a cyclic group, we have 

ik. l > Ik*l 
n 

> niR+] or Ikl > n i R  +] § 1. Since 

> ( n i R  +] § 1) 3 �9 I 

Hence we have an appropriate element if [k*[ 

[K[ _< [k[ 3, we have a desired element if [K[ 

LEMMA 11: L e t G  beagroupo f t ype2A2r ,  r >_ 1. SupposeIK] > (2IR+In§ 
Then there exists an element h E H such that h n is a regular element. 

Proof: We have here Ua = <x~(a)l if c~ is a long root, and Ua = <xa(a, b)l if 

is a short root. Thus we define a : H -+ K*, G : H -+ K* in the following way: 

& = c~ if c~ is a long root, and hx~(a,b)h -1 = x~(a(h)a, &(h)b) if a is a short 

root. Thus we have 21R+ ] homomorphisms (~, & : H --+ K*, and one can easily 

see that  a (H) ,  &(H) D k* for every c~ E R +. For the rest of the proof simply 

repeat the proof of Lemma 10 replacing IR +] by 2]R+]. I 

LEMMA 12: Let G be a proper Chevalley group over an infinite tield K,  except 

A1, B2, Cr, then for every n there exists an element h E H such that h n is a 

regular element. 

Proof'. If K is an algebraic extension of a finite field, our statement follows from 

Lemma 10. If not, we can find an element h E H such that  (h) is dense in H 

[Bo]. Obviously h is a desired element. I 



370 E . W .  ELLERS, N. GORDEEV AND M. HERZOG Isr. J. Math. 

N o w  we can complete  the proo f  o f  (80): First  we can omit  any finite number  of 

groups in our considerat ions (for those we can take as an es t imate  of their  covering 

numbers ,  say, their  orders).  Hence we may  assume tha t  IKI is big enough. Let  

G be a group not of type  A1, B2, Cr, 2B2, 2G2, 2F4. Let h �9 H be an element  

such tha t  h n is regular,  where n = 221R+I (such an element exists according to 

L e m m a s  10, 11, 12 if K is big enough).  Further,  let C be a noncentral  conjugacy 

class of G. Then  there exists an element g �9 C of the form 

(81) g = ulhu2,  

where ul  �9 U - ,  u2 �9 U (see Theorem H). Further,  let u2 �9 Ui, u2 ~ Ui+l, where 

Ui is the  i th  m e m b e r  of the central  series of U. Then  u2 -- xz~xz2 . . .  xz~ m o d  

Ui+l for some xz, C UZ,. Since G is not of type  2G2, by L e m m a  9 we get 

(82) hxz~h -1 -- x -1 mod  Ui+l. 

We have gl = g ( h u 2 h - 1 ) ( h g h - 1 ) h u 2 1 ~ - 1  = u l h u 2 h u 2 h - l h u l h - l h  �9 C 2. Now 

g2 = ( ] t U l h - l h ) g l ( h U l h - l h )  -1 = h u l h - l h u l h ( U 2 h u 2 h  -1)  

= ( ] t u l h - l h u l h - 1 ) h 2 ( u 2 h u 2 h  -1) �9 C 2. 

x I x '  . . . x  ~ mod  Ui+l for some x I UZ~. According to (82), u2hu2h -1 - ~2 ~3 Zs ~ C 

Carry ing  out  this procedure  21R+ [ t imes (recall t ha t  in the case 2A2r we have 

two-pa ramete r  roots)  we can obta in  an element ~ E C n (n = 22[R+[) in the  form 

g = vh  n, where v E U - .  Since h ~ is a regular element,  g is also semisimple and 

regular.  Hence C 2~ D G \ Z ( G )  ([EGI, 1I, III]) and therefore C 4~ = G. 

Since 2B2 and 2F  4 are groups over a field of characterist ic 2, we may  use the  

same proof  because  a 2t-power of a regular  element is also regular in this case. 

Let  G be a group of type  2G2. We assume tha t  K is big enough for H to 

contain a regular  e lement  h. Again we present an element in C in the form (81). 

We have gl = gu2gu21 = ulhU2ul h e C 2, g2 = Ulhgl(Ulh)  -1 = U~lh2U~ �9 

2 -2 = UlhU3ullh2 �9 C 3, g4 (Ullh2)g3(Ullh2)-I ~ ,,~3o 3 C 3. C 2, g3 -= gu2g2u2 

If  u2 e U~, then  u 3 �9 Ui+l because c h a r K  = 3. Since we have here U3 = 1, we 

obta in  in C 27 an e lement  of  the  form vh  27. Since char  K = 3, the  element  h 27 

is also regular  and therefore vh  27 is regular. Thus  C 54 D ~G2\{1} and C l~ = 

2G2. | 
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